Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]

被引:55
|
作者
Rani, Arti [1 ]
Singh, Kashmir [1 ]
Ahuja, Paramvir S. [1 ]
Kumar, Sanjay [1 ]
机构
[1] CSIR, Inst Himalayan Bioresource Technol, Div Biotechnol, Palampur 176061, Himachal Prades, India
关键词
Anthocyanidin synthase; Chalcone isomerase; Flavonoid; Flavonoid 3 ' 5 '-hydroxylase; Gene expression; ANTHOCYANIDIN-REDUCTASE; FLAVONOID BIOSYNTHESIS; GENE; EXPRESSION; ACTIVATION; RESPONSES; ELICITOR; SYNTHASE; CELLS; LIGHT;
D O I
10.1016/j.gene.2011.12.029
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Catechins are bioprospecting molecules present in tea and any effort towards metabolic engineering of this important moiety would require knowledge on gene regulation. These are synthesized through the activities of phenylpropanoid and flavonoid pathways. Expression regulation of various genes of these pathways namely phenylalanine ammonia-lyase (CsPAL), cinnamate 4-hydroxylase (CsC4H), p-coumarate:CoA ligase (Cs4CL), flavanone 3-hydroxylase (CsF3H), dihydroflavonol 4-reductase (CsDFR) and anthocyanidin reductase (CsANR) was accomplished previously. In depth analyses of the remaining genes namely, chalcone synthase (CsCHS), chalcone isomerase (CsCHI), flavonoid 3'5'-hydroxylase (C5F3'5'H) and anthocyanidin synthase (CsANS) were lacking. The objective of the work was to clone and analyze these genes so as to generate a comprehensive knowledge on the critical genes of catechins biosynthesis pathway. Gene expression analysis was carried out in response to leaf age and external cues (drought stress, abscisic acid, gibberellic acid treatments and wounding). A holistic analysis suggested that CsCHI, CsF3H, CsDFR, CsANS and CsANR were amongst the critical regulatory genes in regulating catechins content. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 50 条
  • [21] Advantage of Tetraploidy Camellia sinensis (L.) O. Kuntze
    Paudel, Sarita
    Yue, Yongjun
    Zhang, Donglin
    Bi, Guihong
    HORTSCIENCE, 2022, 57 (09) : S127 - S128
  • [22] Seed development in Camellia sinensis (L.) O. Kuntze
    Bhattacharya, A
    Nagar, PK
    Ahuja, PS
    SEED SCIENCE RESEARCH, 2002, 12 (01) : 39 - 46
  • [23] INVITRO ROOTING OF TEA, CAMELLIA-SINENSIS (L) KUNTZE,O.
    BANERJEE, M
    AGARWAL, B
    INDIAN JOURNAL OF EXPERIMENTAL BIOLOGY, 1990, 28 (10) : 936 - 939
  • [24] Boron re-translocation in tea (Camellia sinensis (L.) O. Kuntze) plants
    Hajiboland, Roghieh
    Bahrami-Rad, Sara
    Bastani, Soodabeh
    Tolra, Roser
    Poschenrieder, Charlotte
    ACTA PHYSIOLOGIAE PLANTARUM, 2013, 35 (08) : 2373 - 2381
  • [25] Spectral characterization and LAI modelling for the tea (Camellia sinensis (L.) O.!Kuntze) canopy
    Rajapakse, RMSS
    Tripathi, NK
    Honda, K
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (18) : 3569 - 3577
  • [26] Differential expression of microRNAs in dormant bud of tea [Camellia sinensis (L.) O. Kuntze]
    Jeyaraj, Anburaj
    Chandran, Viswanathan
    Gajjeraman, Prabu
    PLANT CELL REPORTS, 2014, 33 (07) : 1053 - 1069
  • [27] Differential expression of microRNAs in dormant bud of tea [Camellia sinensis (L.) O. Kuntze]
    Anburaj Jeyaraj
    Viswanathan Chandran
    Prabu Gajjeraman
    Plant Cell Reports, 2014, 33 : 1053 - 1069
  • [28] Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze)
    Zhang, Lei
    Li, Qiong
    Ma, Lifeng
    Ruan, Jianyun
    PLANT AND SOIL, 2013, 366 (1-2) : 659 - 669
  • [29] Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze)
    Lei Zhang
    Qiong Li
    Lifeng Ma
    Jianyun Ruan
    Plant and Soil, 2013, 366 : 659 - 669
  • [30] Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves
    van Breda, Shane V.
    van der Merwe, Chris F.
    Robbertse, Hannes
    Apostolides, Zeno
    PLANTA, 2013, 237 (03) : 849 - 858