Relative h-preinvex functions and Integra inequalities

被引:4
作者
Matloka, Marian [1 ]
机构
[1] Poznan Univ Econ & Business, Niepodleglosci 10, PL-61875 Poznan, Poland
关键词
Relative convex set; relative invex set; relative h-preinvex function; functional integrals; Hermite-Hadamard inequality; HADAMARD-TYPE INEQUALITIES; DIFFERENTIABLE MAPPINGS; REAL NUMBERS; CONVEX; (ALPHA; SETS;
D O I
10.1515/gmj-2017-0064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a new class of convex functions, called relative h-preivex functions. Seven new inequalities of Hermite-Hadamard type for relative h-preinvex functions are established using different approaches.
引用
收藏
页码:285 / 295
页数:11
相关论文
共 35 条
  • [1] [Anonymous], 2013, ANALYSIS-UK, DOI DOI 10.1524/ANLY.2013.1192
  • [2] [Anonymous], J INEQUAL APPL
  • [3] Hermite-Hadamard type inequalities for the m- and (α, m)-logarithmically convex functions
    Bai, Rui-Fang
    Qi, Feng
    Xi, Bo-Yan
    [J]. FILOMAT, 2013, 27 (01) : 1 - 7
  • [4] Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities
    Bombardelli, Mea
    Varosanec, Sanja
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (09) : 1869 - 1877
  • [5] Breckner W. W., 1978, PUBL I MATH, V23, P13
  • [6] Some properties of semi-E-convex functions
    Chen, XS
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) : 251 - 262
  • [7] Cristescu G., 2002, APPL OPTIM, V68
  • [8] Cristescu G, 2015, CARPATHIAN J MATH, V31, P173
  • [9] ON MINKOWSKI AND HERMITE-HADAMARD INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRATION
    Dahmani, Zoubir
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2010, 1 (01) : 51 - 58
  • [10] Dragomir S.S., 1995, Soochow J. Math, V21, P335