Mechanical performance of additively manufactured austenitic 316L stainless steel

被引:33
作者
Kim, Kyu-Tae [1 ]
机构
[1] Dongguk Univ, Dept Nucl & Energy Syst Engn, 123 Dongdae Ro, Gyeongju 780714, Gyeongbuk, South Korea
关键词
316L stainless steel; Additive manufacturing; Neutron irradiation; Mechanical properties; MICROSTRUCTURE; BEHAVIOR; IRRADIATION; STRENGTH; PARTS;
D O I
10.1016/j.net.2021.07.041
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
For tensile tests, Vickers hardness tests and microstructure tests, plate-type and box-type specimens of austenitic 316L stainless steels were produced by a conventional machining (CM) process as well as two additive manufacturing processes such as direct metal laser sintering (DMLS) and direct metal tooling (DMT). The specimens were irradiated up to a fast neutron fluence of 3.3 x 109 n/cm2 at a neutron irradiation facility. Mechanical performance of the unirradiated and irradiated specimens were investigated at room temperature and 300 degrees C, respectively. The tensile strengths of the DMLS, DMT and CM 316L specimens are in descending order but the elongations are in reverse order, regardless of irradiation and temperature. The ratio of Vickers hardness to ultimate tensile strength was derived to be between 3.21 and 4.01. The additive manufacturing processes exhibit suitable mechanical performance, comparing the tensile strengths and elongations of the conventional machining process.
引用
收藏
页码:244 / 254
页数:11
相关论文
共 50 条
  • [11] Anisotropic spall failure of additively manufactured 316L stainless steel
    Lamb, K.
    Koube, K.
    Kacher, J.
    Sloop, T.
    Thadhani, N.
    Babu, S. S.
    ADDITIVE MANUFACTURING, 2023, 66
  • [12] Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel
    Gray, G. T., III
    Livescu, V.
    Rigg, P. A.
    Trujillo, C. P.
    Cady, C. M.
    Chen, S. R.
    Carpenter, J. S.
    Lienert, T. J.
    Fensin, S. J.
    ACTA MATERIALIA, 2017, 138 : 140 - 149
  • [13] Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L
    Kumar, Deepak
    Jhavar, Suyog
    Arya, Abhinav
    Prashanth, K. G.
    Suwas, Satyam
    INTERNATIONAL JOURNAL OF FRACTURE, 2022, 235 (01) : 61 - 78
  • [14] High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
    Shamsujjoha, Md.
    Agnew, Sean R.
    Fitz-Gerald, James M.
    Moore, William R.
    Newman, Tabitha A.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (07): : 3011 - 3027
  • [15] A multiscale investigation of deformation heterogeneity in additively manufactured 316L stainless steel
    Chen, Ling
    Liu, Wenyang
    Song, Lijun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 820
  • [16] Strengthening the additively manufactured 316L stainless steel by adding Al
    Xu, Kang
    Yu, Mingxiong
    Huang, Sen
    Tian, Hongsheng
    Mao, Lizhong
    Liu, Xinjian
    Zheng, Danfeng
    Gao, Hongwei
    Zhao, Dengbiao
    Li, Bochuan
    MATERIALS LETTERS, 2024, 357
  • [17] Size-dependent stochastic tensile properties in additively manufactured 316L stainless steel
    Roach, Ashley M.
    White, Benjamin C.
    Garland, Anthony
    Jared, Bradley H.
    Carroll, Jay D.
    Boyce, Brad L.
    ADDITIVE MANUFACTURING, 2020, 32
  • [18] Elimination of porosity in additively manufactured 316L stainless steel by high-pressure torsion
    Yusuf, Shahir Mohd
    Chen, Ying
    Musa, Nur Hidayah
    Mazlan, Nurainaa
    Nordin, Nur Azmah
    Nazmi, Nurhazimah
    Mazlan, Saiful Amri
    Gao, Nong
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 123 (3-4) : 1175 - 1187
  • [19] Ballistic Performance of Additively Manufactured 316L Stainless Steel Spherical Fragments
    Xue H.
    Wang T.
    Huang G.
    Cui X.
    Han H.
    Binggong Xuebao/Acta Armamentarii, 2024, 45 (02): : 395 - 406
  • [20] ADDITIVELY MANUFACTURED FULL-DENSITY STAINLESS STEEL 316L WITH BINDER JET PRINTING
    Truong Do
    Bauder, Tyler J.
    Suen, Hawke
    Rego, Kristian
    Yeom, Junghoon
    Kwon, Patrick
    PROCEEDINGS OF THE ASME 13TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2018, VOL 1, 2018,