Impact of Phase Noise and Compensation Techniques in Coherent Optical Systems

被引:55
作者
Colavolpe, Giulio [1 ]
Foggi, Tommaso [2 ]
Forestieri, Enrico [3 ]
Secondini, Marco [3 ]
机构
[1] Univ Parma, Dipartimento Ingn Informaz, I-43100 Parma, Italy
[2] CNIT Res Unit, I-43100 Parma, Italy
[3] Scuola Super Sant Anna, I-56124 Pisa, Italy
关键词
Coherent detection; group velocity dispersion (GVD); optical communication; orthogonal frequency division multiplexing (OFDM); phase noise; FEEDFORWARD CARRIER RECOVERY; RECEIVER CONCEPT; TRANSMISSION; OFDM; EQUALIZATION; CHANNELS; TOLERANT; CODES;
D O I
10.1109/JLT.2011.2164237
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One of the most severe impairments that affect coherent optical systems employing high-order modulation formats is phase noise due to transmit and receive lasers. This is especially detrimental in uncompensated links, where an ideal compensator for channel distortions and laser phase noise should first eliminate receive phase noise, then equalize channel distortions, and only later compensate for transmit phase noise. Unfortunately, the simultaneous presence of transmit and receive phase noise makes very difficult to discriminate between them, even in the presence of a pilot tone. Moreover, the picture is different for optical systems using single-carrier or orthogonal frequency division multiplexing, where transmit and receive phase noise components may have a different impact. All these aspects are analyzed and discussed in this paper. A novel digital coherence enhancement (DCE) technique, able to significantly reduce the phase noise of transmit or receive lasers by using an interferometric device plus a very simple electronic processing, is also described. The performance of this technique and the statistical properties of the residual phase noise are analytically derived and verified by simulations, showing a high increase of the maximum bit-rate-distance product. The practical implementation of DCE is finally discussed and some alternative implementation schemes are presented.
引用
收藏
页码:2790 / 2800
页数:11
相关论文
共 32 条
[1]  
Agrawal G.P, 2002, Fiber-optic communication systems, VThird
[2]  
[Anonymous], IEEE COMMUN MAG
[3]   OFDM for Optical Communications [J].
Armstrong, Jean .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (1-4) :189-204
[4]   OFDM versus Single-Carrier Transmission for 100 Gbps Optical Communication [J].
Barbieri, Alan ;
Colavolpe, Giulio ;
Foggi, Tommaso ;
Forestieri, Enrico ;
Prati, Giancarlo .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2010, 28 (17) :2537-2551
[5]  
Benedetto S., 1987, DIGITAL TRANSMISSION
[6]  
CHARLET G, 2009, P OPT FIB COMM C OFC
[7]   Noncoherent sequence detection [J].
Colavolpe, G ;
Raheli, R .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1999, 47 (09) :1376-1385
[8]   Algorithms for iterative decoding in the presence of strong phase noise [J].
Colavolpe, G ;
Barbieri, A ;
Caire, G .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2005, 23 (09) :1748-1757
[9]  
COLAVOLPE G, 2010, P IEEE GLOB TEL C MI
[10]  
Colavolpe G, 2006, IEEE T WIREL COMMUN, V5, P1757, DOI [10.1109/TWC.2006.1673087, 10.1109/TWC.2006.04274]