LMI Based Robust LSVF Stabilization of A Class of Nonlinear Systems

被引:0
作者
Sarkar, Chaity [1 ]
Sengupta, Aparajita [1 ]
机构
[1] Indian Inst Engn Sci & Technol, Dept Elect Engn, Howrah 711103, W Bengal, India
来源
2015 34TH CHINESE CONTROL CONFERENCE (CCC) | 2015年
关键词
ADAPTIVE BACKSTEPPING CONTROL; SLIDING MODE CONTROL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A method is proposed to design Linear Matrix Inequalities (LMI) based robust controllers for a class of nonlinear systems. Nonlinear functions are approximated by their upper bounds using convex-concave extensions. The contribution of the paper lies in the fact that the control law obtained is in the form of Linear State Variable Feedback (LSVF) and it is robust with respect to the parametric uncertainties. A new control Lyapunov function using Lie Derivatives is also introduced. A numerical example illustrates the steps of the design.
引用
收藏
页码:569 / 574
页数:6
相关论文
共 23 条
[1]   An LMI-based controller synthesis for periodic trajectories in a class of nonlinear systems [J].
Basso, M ;
Genesio, R ;
Tesi, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (10) :1740-1744
[2]  
Bedioui N., 2008, 5 INT MULT SYST SIGN, P1
[3]  
Chen J., 1991, 30 IEEE C DEC CONTR, V3, P2515
[4]   Control of Nonlinear and LPV Systems: Interval Observer-Based Framework [J].
Efimov, Denis ;
Raissi, Tarek ;
Zolghadri, Ali .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (03) :773-778
[5]  
Freeman R., 2008, Robust Nonlinear Control Design: State-space and Lyapunov Techniques
[6]   Adaptive backstepping control of a class of chaotic systems [J].
Ge, SS ;
Wang, C ;
Lee, TH .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (05) :1149-1156
[7]   Wavelet adaptive backstepping control for a class of nonlinear systems [J].
Hsu, Chun-Fei ;
Lin, Chih-Min ;
Lee, Tsu-Tian .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (05) :1175-1183
[8]  
Isidori A, 1995, NONLINEAR CONTROL SYSTEMS DESIGN 1995, VOLS 1 AND 2, P87
[9]  
Jansson C, 2001, SYMBOLIC ALGEBRAIC METHODS AND VERIFICATION METHODS, P117
[10]   Convex-concave extensions [J].
Jansson, C .
BIT NUMERICAL MATHEMATICS, 2000, 40 (02) :291-313