Inferring social structure from temporal data

被引:73
作者
Psorakis, Ioannis [1 ,2 ]
Voelkl, Bernhard [3 ]
Garroway, Colin J. [3 ]
Radersma, Reinder [3 ]
Aplin, Lucy M. [3 ]
Crates, Ross A. [3 ]
Culina, Antica [3 ]
Farine, Damien R. [3 ,4 ,5 ]
Firth, Josh A. [3 ]
Hinde, Camilla A. [3 ,6 ]
Kidd, Lindall R. [3 ]
Milligan, Nicole D. [3 ]
Roberts, Stephen J. [1 ]
Verhelst, Brecht [3 ]
Sheldon, Ben C. [3 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[2] Thought Machine Ltd, London EC2 3HU, England
[3] Univ Oxford, Dept Zool, Edward Grey Inst, Oxford OX1 3PS, England
[4] Univ Calif Davis, Dept Anthropol, Davis, CA 95616 USA
[5] Smithsonian Trop Res Inst, Ancon, Panama
[6] Wageningen Univ, Dept Anim Sci, NL-6700 AH Wageningen, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
Social networks; Group detection; Flocks; Gathering events; Great tits; NETWORKS; INDIVIDUALS; ASSOCIATION;
D O I
10.1007/s00265-015-1906-0
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Social network analysis has become a popular tool for characterising the social structure of populations. Animal social networks can be built either by observing individuals and defining links based on the occurrence of specific types of social interactions, or by linking individuals based on observations of physical proximity or group membership, given a certain behavioural activity. The latter approaches of discovering network structure require splitting the temporal observation stream into discrete events given an appropriate time resolution parameter. This process poses several non-trivial problems which have not received adequate attention so far. Here, using data from a study of passive integrated transponder (PIT)-tagged great tits Parus major, we discuss these problems, demonstrate how the choice of the extraction method and the temporal resolution parameter influence the appearance and properties of the retrieved network and suggest a modus operandi that minimises observer bias due to arbitrary parameter choice. Our results have important implications for all studies of social networks where associations are based on spatio-temporal proximity, and more generally for all studies where we seek to uncover the relationships amongst a population of individuals that are observed through a temporal data stream of appearance records.
引用
收藏
页码:857 / 866
页数:10
相关论文
共 50 条
  • [41] Inferring social network user profiles using a partial social graph
    Raïssa Yapan Dougnon
    Philippe Fournier-Viger
    Jerry Chun-Wei Lin
    Roger Nkambou
    Journal of Intelligent Information Systems, 2016, 47 : 313 - 344
  • [42] Inferring social network user profiles using a partial social graph
    Dougnon, Raissa Yapan
    Fournier-Viger, Philippe
    Lin, Jerry Chun-Wei
    Nkambou, Roger
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2016, 47 (02) : 313 - 344
  • [43] Estimating tie strength in social networks using temporal communication data
    Urena-Carrion, Javier
    Saramaki, Jari
    Kivela, Mikko
    EPJ DATA SCIENCE, 2020, 9 (01)
  • [44] Estimating tie strength in social networks using temporal communication data
    Javier Ureña-Carrion
    Jari Saramäki
    Mikko Kivelä
    EPJ Data Science, 9
  • [46] Inferring microbial co-occurrence networks from amplicon data: a systematic evaluation
    Kishore, Dileep
    Birzu, Gabriel
    Hu, Zhenjun
    DeLisi, Charles
    Korolev, Kirill S.
    Segre, Daniel
    MSYSTEMS, 2023, 8 (04)
  • [47] Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters
    Shang, Yu
    Sikorski, Johannes
    Bonkowski, Michael
    Fiore-Donno, Anna-Maria
    Kandeler, Ellen
    Marhan, Sven
    Boeddinghaus, Runa S.
    Solly, Emily F.
    Schrumpf, Marion
    Schoening, Ingo
    Wubet, Tesfaye
    Buscot, Francois
    Overmann, Joerg
    PLOS ONE, 2017, 12 (03):
  • [48] Inferring circadian gene regulatory relationships from gene expression data with a hybrid framework
    Hu, Shuwen
    Jing, Yi
    Li, Tao
    Wang, You-Gan
    Liu, Zhenyu
    Gao, Jing
    Tian, Yu-Chu
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [49] Inferring Haplotypes of Copy Number Variations From High-Throughput Data With Uncertainty
    Kato, Mamoru
    Yoon, Seungtai
    Hosono, Naoya
    Leotta, Anthony
    Sebat, Jonathan
    Tsunoda, Tatsuhiko
    Zhang, Michael Q.
    G3-GENES GENOMES GENETICS, 2011, 1 (01): : 35 - 42
  • [50] Inferring Neuronal Couplings From Spiking Data Using a Systematic Procedure With a Statistical Criterion
    Terada, Yu
    Obuchi, Tomoyuki
    Isomura, Takuya
    Kabashima, Yoshiyuki
    NEURAL COMPUTATION, 2020, 32 (11) : 2187 - 2211