External magnetic field control of the magnetic breather parameters in a three-layer ferromagnetic structure

被引:4
作者
Ekomasov, E. G. [1 ,2 ,3 ]
Nazarov, V. N. [4 ,5 ]
Gumerov, A. M. [2 ]
Samsonov, K. Y. [1 ]
Murtazin, R. R. [2 ]
机构
[1] Tyumen State Univ, 6 Volodarskogo St, Tyumen 625003, Russia
[2] Bashkir State Univ, 32 Zaki Validi St, Ufa 450076, Russia
[3] Natl Res Univ, South Ural State Univ, 76 Lenin Av, Chelyabinsk 454080, Russia
[4] Inst Mol & Crystal Phys UFRC RAS, 151 Oktyabrya Av, Ufa 450075, Russia
[5] Bashkir State Med Univ, 3 Lenina St, Ufa 450008, Russia
来源
LETTERS ON MATERIALS | 2020年 / 10卷 / 02期
基金
俄罗斯基础研究基金会;
关键词
three-layer ferromagnetic; domain walls dynamics; localized magnetic inhomogeneities; sine-Gordon equation; autoresonance; ASYMPTOTIC ANALYSIS; DOMAIN-WALL; INHOMOGENEITIES; GENERATION; EXCITATION; DYNAMICS; MODEL; COERCIVITY; ANISOTROPY; SOLITONS;
D O I
10.22226/2410-3535-2020-2-141-146
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The generation and autoresonant excitation of a magnetic breather in a three-layer ferromagnet by fields of variable frequency and small amplitude in the presence of dissipation in the system is considered. The ferromagnetic structure consists of two wide identical layers separated by a thin layer with modified values of the magnetic anisotropy parameter. The anisotropy parameters are considered functions of the coordinate directed perpendicular to the layer interface. In the one-dimensional case, the function of the anisotropy parameter is modeled in the form of a rectangle. The external magnetic field is variable in time with a small amplitude and frequency, which is a linear function of time. The obtained equation of motion for magnetization in the form of a sine-Gordon equation was solved numerically using an explicit integration scheme. The distribution of magnetization at the initial time was set in the form of a Bloch domain boundary, located far from a thin layer. At certain values of the parameters of a thin layer, when a domain wall passes at a constant speed through it, a magnetic inhomogeneity is formed in the form of a magnetic breather. In the absence of an external field, the breather amplitude decays with time. An analysis of the solutions of the equation of motion in an alternating field shows the possibility, under certain conditions, of increasing with time the amplitude of the magnetic breather. For each case of magnetic anisotropy parameter values, there is a threshold value of the magnetic field amplitude leading to resonance. The resonance effect is also affected by the geometric parameters of a thin layer: with a decrease in the width of the layer, the amplitude of the breather increases more slowly in time. With a large layer width, the translational mode of breather oscillations is also excited.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 40 条
  • [1] [Anonymous], J MATH SCI, DOI 10.1007/s10958-005-0079-1
  • [2] Direct Observation of a Localized Magnetic Soliton in a Spin-Transfer Nanocontact
    Backes, D.
    Macia, F.
    Bonetti, S.
    Kukreja, R.
    Ohldag, H.
    Kent, A. D.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (12)
  • [3] Generation of Solitons in a Ferromagnetic Domain Structure
    Batalov, S., V
    Kiselev, V. V.
    Raskovalov, A. A.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (08) : 1324 - 1332
  • [4] Resonance effects in magnetic soliton dynamics
    Batalov, S. V.
    Shagalov, A. G.
    [J]. PHYSICS OF METALS AND METALLOGRAPHY, 2013, 114 (02) : 103 - 107
  • [5] Autophasing of solitons
    Batalov, S. V.
    Maslov, E. M.
    Shagalov, A. G.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2009, 108 (05) : 890 - 897
  • [6] Cuevas-Maraver J, 2014, Nonlinear Systems and Complexity, V10
  • [7] A ONE-DIMENSIONAL MODEL FOR WALL MOTION COERCIVITY IN MAGNETOOPTIC MEDIA
    DELLATORRE, E
    PERLOV, CM
    [J]. JOURNAL OF APPLIED PHYSICS, 1991, 69 (08) : 4596 - 4598
  • [8] Studying the nucleation and evolution of magnetic inhomogeneities of the soliton and breather type in magnetic materials with local inhomogeneities of anisotropy
    Ekomasov, E. G.
    Azamatov, Sh. A.
    Murtazin, R. R.
    [J]. PHYSICS OF METALS AND METALLOGRAPHY, 2008, 105 (04) : 313 - 321
  • [9] Dynamics of localized magnetic inhomogeneities in the five-layer ferromagnetic structure
    Ekomasov, E. G.
    Gumerov, A. M.
    Kudryavtsev, R. V.
    [J]. LETTERS ON MATERIALS-PIS MA O MATERIALAKH, 2016, 6 (02): : 138 - 140
  • [10] Ekomasov Evgeniy G., 2015, Solid State Phenomena, V233-234, P51, DOI 10.4028/www.scientific.net/SSP.233-234.51