Adaptive tracking synchronization for coupled reaction-diffusion neural networks with parameter mismatches

被引:19
作者
Zhang, Hao [1 ,2 ]
Ding, Zhixia [3 ]
Zeng, Zhigang [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
[2] Key Lab Image Proc & Intelligent Control Educ Min, Wuhan 430074, Peoples R China
[3] Wuhan Inst Technol, Sch Elect & Informat Engn, Wuhan 430205, Peoples R China
基金
中国国家自然科学基金;
关键词
Tracking synchronization; Reaction-diffusion neural network; Adaptive control; Parameter mismatch; DIRICHLET BOUNDARY-CONDITIONS; TIME-VARYING DELAYS; EXPONENTIAL SYNCHRONIZATION; GLOBAL SYNCHRONIZATION; IMPULSIVE SYNCHRONIZATION; DYNAMICAL NETWORKS; PINNING CONTROL; PASSIVITY; TERMS; STRATEGIES;
D O I
10.1016/j.neunet.2019.12.025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, tracking synchronization for coupled reaction-diffusion neural networks with parameter mismatches is investigated. For such a networked control system, only local neighbor information is used to compensate the mismatch characteristic termed as parameter mismatch, uncertainty or external disturbance. Different from the general boundedness hypothesis, the parameter mismatches are permitted to be unbounded. For the known parameter mismatches, parameter-dependent controller and parameter-independent adaptive controller are respectively designed. While for fully unknown network parameters and parameter mismatches, a distributed adaptive controller is proposed. By means of partial differential equation theories and differential inequality techniques, the tracking synchronization errors driven by these nonlinear controllers are proved to be uniformly ultimately bounded and exponentially convergent to some adjustable bounded domains. Finally, three numerical examples are given to test the effectiveness of the proposed controllers. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:146 / 157
页数:12
相关论文
共 54 条
  • [1] [Anonymous], 1985, Matrix Analysis
  • [2] [Anonymous], 1991, APPL NONLINEAR CONTR
  • [3] Global synchronization in an array of delayed neural networks with hybrid coupling
    Cao, Jinde
    Chen, Guanrong
    Li, Ping
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (02): : 488 - 498
  • [4] Global synchronization of coupled delayed neural networks and applications to chaotic CNN models
    Chen, GR
    Zhou, J
    Liu, ZR
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (07): : 2229 - 2240
  • [5] Pinning impulsive synchronization for stochastic reaction-diffusion dynamical networks with delay
    Chen, Huabin
    Shi, Peng
    Lim, Cheng-Chew
    [J]. NEURAL NETWORKS, 2018, 106 : 281 - 293
  • [6] Global μ-Synchronization of Linearly Coupled Unbounded Time-Varying Delayed Neural Networks With Unbounded Delayed Coupling
    Chen, Tianping
    Wu, Wei
    Zhou, Wenjuan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (10): : 1809 - 1816
  • [7] Exponential synchronization of a class of neural networks with time-varying delays
    Cheng, CJ
    Liao, TL
    Yan, JJ
    Hwang, CC
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2006, 36 (01): : 209 - 215
  • [8] CELLULAR NEURAL NETWORKS - THEORY
    CHUA, LO
    YANG, L
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10): : 1257 - 1272
  • [9] Evans L.C., 1996, Partial Differential Equations
  • [10] Global Exponential Synchronization of Multiple Memristive Neural Networks With Time Delay via Nonlinear Coupling
    Guo, Zhenyuan
    Yang, Shaofu
    Wang, Jun
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (06) : 1300 - 1311