Set-membership localization with probabilistic errors

被引:9
作者
Jaulin, Luc [1 ]
机构
[1] ENSTA Bretagne, F-29806 Brest, France
关键词
Gaussian noise; Interval analysis; Probabilistic estimation; Robust estimation; Set-membership estimation; Outliers; STATE ESTIMATION; PROPAGATION;
D O I
10.1016/j.robot.2011.03.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Interval methods have been shown to be efficient, robust and reliable to solve difficult set-membership localization problems. However, they are unsuitable in a probabilistic context, where the approximation of an unbounded probability density function by a set cannot be accepted. This paper proposes a new probabilistic approach which makes possible to use classical set-membership localization methods which are robust with respect to outliers. The approach is illustrated on two simulated examples. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:489 / 495
页数:7
相关论文
共 24 条
[1]   Box particle filtering for nonlinear state estimation using interval analysis [J].
Abdallah, Fahed ;
Gning, Amadou ;
Bonnifait, Philippe .
AUTOMATICA, 2008, 44 (03) :807-815
[2]   RECURSIVE STATE ESTIMATION FOR A SET-MEMBERSHIP DESCRIPTION OF UNCERTAINTY [J].
BERTSEKAS, DP ;
RHODES, IB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (02) :117-+
[3]  
Caiti A, 2002, ACTA ACUST UNITED AC, V88, P648
[4]  
CLERENTIN A, 2008, AUTON ROBOT, V24, P1573
[5]   Constraints propagation techniques on intervals for a guaranteed localization using redundant data [J].
Gning, A. ;
Bonnifait, Ph. .
AUTOMATICA, 2006, 42 (07) :1167-1175
[6]   Guaranteed non-linear estimation using constraint propagation on sets [J].
Jaulin, L ;
Kieffer, M ;
Braems, I ;
Walter, E .
INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (18) :1772-1782
[7]   Guaranteed robust nonlinear minimax estimation [J].
Jaulin, L ;
Walter, E .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (11) :1857-1864
[8]  
JAULIN L, 2009, 2 WORKSH PRINC METH
[9]  
JAULIN L, 1996, P CESA 96 IMACS MULT, P1156
[10]  
Kalman R. E., 1960, Bol. Soc. Mat. Mexicana, V5, P102