Minimal hypersurfaces in manifolds of Ricci curvature bounded below

被引:3
作者
Ding, Qi [1 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200438, Peoples R China
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2022年 / 2022卷 / 791期
关键词
SPACES; THEOREM; CONES;
D O I
10.1515/crelle-2022-0050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the angle estimate of distance functions from minimal hypersurfaces in manifolds of Ricci curvature bounded from below using Colding's method in [T. H. Golding, Ricci curvature and volume convergence, Ann. of Math. (2) 145 (1997), no. 3, 477-501]. With Cheeger-Colding theory, we obtain the Laplacian comparison for limits of distance functions from minimal hypersurfaces in the version of Ricci limit space. As an application, if a sequence of minimal hypersurfaces converges to a metric cone C Y x Rn-k (2 <= k <= n) in a non-collapsing metric cone CX x R-n(-k) obtained from ambient manifolds of almost nonnegative Ricci curvature, then we can prove a Frankel property for the cross section Y of C Y . Namely, Y has only one connected component in X.
引用
收藏
页码:247 / 282
页数:36
相关论文
共 50 条
[21]   Euclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below [J].
Gigli, Nicola ;
Mondino, Andrea ;
Rajala, Tapio .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 705 :233-244
[22]   3-Manifolds with nonnegative Ricci curvature [J].
Liu, Gang .
INVENTIONES MATHEMATICAE, 2013, 193 (02) :367-375
[23]   Curvature estimates for immersed hypersurfaces in Riemannian manifolds [J].
Guan, Pengfei ;
Lu, Siyuan .
INVENTIONES MATHEMATICAE, 2017, 208 (01) :191-215
[24]   Sobolev Inequalities in Manifolds With Nonnegative Intermediate Ricci Curvature [J].
Ma, Hui ;
Wu, Jing .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (03)
[25]   The Fundamental Groups of Open Manifolds with Nonnegative Ricci Curvature [J].
Pan, Jiayin .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
[26]   Barycenters in Alexandrov spaces of curvature bounded below [J].
Ohta, Shin-ichi .
ADVANCES IN GEOMETRY, 2012, 12 (04) :571-587
[27]   Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below: I [J].
Kondo, Kei ;
Tanaka, Minoru .
MATHEMATISCHE ANNALEN, 2011, 351 (02) :251-266
[28]   Topology and ε-regularity theorems on collapsed manifolds with Ricci curvature bounds [J].
Naber, Aaron ;
Zhang, Ruobing .
GEOMETRY & TOPOLOGY, 2016, 20 (05) :2575-2664
[29]   RIGIDITY OF MANIFOLDS WITH BOUNDARY UNDER A LOWER RICCI CURVATURE BOUND [J].
Sakurai, Yohei .
OSAKA JOURNAL OF MATHEMATICS, 2017, 54 (01) :85-119
[30]   On the tangent cone of Kahler manifolds with Ricci curvature lower bound [J].
Liu, Gang .
MATHEMATISCHE ANNALEN, 2018, 370 (1-2) :649-667