Minimal hypersurfaces in manifolds of Ricci curvature bounded below

被引:1
|
作者
Ding, Qi [1 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200438, Peoples R China
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2022年 / 2022卷 / 791期
关键词
SPACES; THEOREM; CONES;
D O I
10.1515/crelle-2022-0050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the angle estimate of distance functions from minimal hypersurfaces in manifolds of Ricci curvature bounded from below using Colding's method in [T. H. Golding, Ricci curvature and volume convergence, Ann. of Math. (2) 145 (1997), no. 3, 477-501]. With Cheeger-Colding theory, we obtain the Laplacian comparison for limits of distance functions from minimal hypersurfaces in the version of Ricci limit space. As an application, if a sequence of minimal hypersurfaces converges to a metric cone C Y x Rn-k (2 <= k <= n) in a non-collapsing metric cone CX x R-n(-k) obtained from ambient manifolds of almost nonnegative Ricci curvature, then we can prove a Frankel property for the cross section Y of C Y . Namely, Y has only one connected component in X.
引用
收藏
页码:247 / 282
页数:36
相关论文
共 50 条