Twisted and conical Kahler-Ricci solitons on Fano manifolds

被引:4
作者
Jin, Xishen [1 ]
Liu, Jiawei [2 ]
Zhang, Xi [3 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[2] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[3] Univ Sci & Technol China, Chinese Acad Sci, Sch Math Sci, Key Lab Wu Wen Tsun Math, Hefei 230026, Peoples R China
关键词
Kahler-Ricci soliton; Fano manifold; Conical metric; EINSTEIN-METRICS; CURVATURE; INEQUALITY; UNIQUENESS; INVARIANT;
D O I
10.1016/j.jfa.2016.08.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first study the relationship between the existence of twisted Kahler-Ricci solitons and the properness of modified twisted K-energy. Approximating by a sequence of smooth twisted kahler-Ricci solitons, we obtain an existence result of conical Kahler-Ricci solitons. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:2396 / 2421
页数:26
相关论文
共 32 条
[1]  
[Anonymous], 1992, Int. J. Math.
[2]  
[Anonymous], ARXIV13044490
[3]  
[Anonymous], 2000, Canonical metrics in Kahler geometry
[4]   A thermodynamical formalism for Monge-Ampere equations, Moser-Trudinger inequalities and Kahler-Einstein metrics [J].
Berman, Robert J. .
ADVANCES IN MATHEMATICS, 2013, 248 :1254-1297
[5]  
Berman Robert J., 2014, ARXIV14018264
[6]   Kahler-Ricci solitons on compact complex manifolds with C1(M)>0 [J].
Cao, HD ;
Tian, G ;
Zhu, XH .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (03) :697-719
[7]  
Cao HuaiDong, 2012, ARXIV12034794
[8]  
Cheeger J, 2000, J DIFFER GEOM, V54, P13
[9]  
Chen Xiuxiong, 2012, J AM MATH SOC
[10]  
Datar V., 2013, ARXIV13086781