Privacy-Preserving federated learning in medical diagnosis with homomorphic re-Encryption

被引:39
作者
Ku, Hanchao [1 ]
Susilo, Willy [1 ,2 ]
Zhang, Yudi [1 ,2 ]
Liu, Wenfen [3 ]
Zhang, Mingwu [1 ,3 ]
机构
[1] Hubei Univ Technol, Sch Comp, Wuhan 430068, Peoples R China
[2] Univ Wollongong, Sch Comp & Informat Technol, Wollongong, NSW 2522, Australia
[3] Guilin Univ Elect Technol, Sch Comp Sci & Informat Secur, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Privacy-Preserving; Federated learning; Gradient descent; Homomorphic re-Encryption; SECURITY;
D O I
10.1016/j.csi.2021.103583
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Unlike traditional centralized machine learning, distributed machine learning provides more efficient and useful application scenarios. However, distributed learning may not meet some security requirements. For example, in medical treatment and diagnosis, an increasing number of people are using IoT devices to record their personal data, when training medical data, the users are not willing to reveal their private data to the training party. How to collect and train the data securely has become the main problem to be resolved. Federated learning can combine a large amount of scattered data for training, and protect user data. Compared with general distributed learning, federated learning is more suitable for training on scattered data. In this paper, we propose a privacy preserving federated learning scheme that is based on the cryptographic primitive of homomorphic re encryption, which can protect user data through homomorphic re-encryption and trains user data through batch gradient descent (BGD). In our scheme, we use the IoT device to encrypt and upload user data, the fog node to collect user data, and the server to complete data aggregation and re-encrypting. Besides, the security analysis and experimental results show that our scheme can complete model training while preserving user data and local models.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Poisoning attacks resilient privacy-preserving federated learning scheme based on lightweight homomorphic encryption
    Zhang, Chong
    Zhang, Xiaojun
    Yang, Xingchun
    Liu, Bingyun
    Zhang, Yuan
    Zhou, Rang
    INFORMATION FUSION, 2025, 121
  • [22] Secure and Privacy-Preserving Decentralized Federated Learning for Personalized Recommendations in Consumer Electronics Using Blockchain and Homomorphic Encryption
    Gupta, Brij B.
    Gaurav, Akshat
    Arya, Varsha
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2546 - 2556
  • [23] A privacy preserving federated learning scheme using homomorphic encryption and secret sharing
    Shi, Zhaosen
    Yang, Zeyu
    Hassan, Alzubair
    Li, Fagen
    Ding, Xuyang
    TELECOMMUNICATION SYSTEMS, 2023, 82 (03) : 419 - 433
  • [24] A privacy preserving federated learning scheme using homomorphic encryption and secret sharing
    Zhaosen Shi
    Zeyu Yang
    Alzubair Hassan
    Fagen Li
    Xuyang Ding
    Telecommunication Systems, 2023, 82 : 419 - 433
  • [25] Using Homomorphic Proxy Re-Encryption to Enhance Security and Privacy of Federated Learning-Based Intelligent Connected Vehicles
    Bai, Yang
    Rao, Yutang
    Wu, Hongyan
    Wang, Juan
    Yang, Wentao
    Xing, Gaojie
    Yang, Jiawei
    Yuan, Xiaoshu
    IET INFORMATION SECURITY, 2025, 2025 (01)
  • [26] PRIVACY PRESERVING FEDERATED LEARNING FROM MULTI-INPUT FUNCTIONAL PROXY RE-ENCRYPTION
    Feng, Xinyu
    Shen, Qingni
    Li, Cong
    Fang, Yuejian
    Wu, Zhonghai
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6955 - 6959
  • [27] CryptoFE: Practical and Privacy-Preserving Federated Learning via Functional Encryption
    Qian, Xinyuan
    Li, Hongwei
    Hao, Meng
    Yuan, Shuai
    Zhang, Xilin
    Guo, Song
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2999 - 3004
  • [28] Privacy-preserving collaboration in blockchain-enabled IoT: The synergy of modified homomorphic encryption and federated learning
    Anitha, Raja
    Murugan, Mahalingam
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2024, 37 (18)
  • [29] Secure and Flexible Privacy-Preserving Federated Learning Based on Multi-Key Fully Homomorphic Encryption
    Shen, Jiachen
    Zhao, Yekang
    Huang, Shitao
    Ren, Yongjun
    ELECTRONICS, 2024, 13 (22)
  • [30] Privacy Preserving Federated Learning: A Novel Approach for Combining Differential Privacy and Homomorphic Encryption
    Aziz, Rezak
    Banerjee, Soumya
    Bouzefrane, Samia
    INFORMATION SECURITY THEORY AND PRACTICE, WISTP 2024, 2024, 14625 : 162 - 177