COMPUTING HILBERT CLASS POLYNOMIALS WITH THE CHINESE REMAINDER THEOREM

被引:45
作者
Sutherland, Andrew V. [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
ELLIPTIC-CURVES; MULTIPLICATION; ALGORITHM; BOUNDS;
D O I
10.1090/S0025-5718-2010-02373-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a space-efficient algorithm to compute the Hilbert class polynomial H-D (X) modulo a positive integer P, based on an explicit form of the Chinese Remainder Theorem. Under the Generalized Riemann Hypothesis, the algorithm uses O(vertical bar D vertical bar(1/2+epsilon) log P) space and has an expected running time of O(vertical bar D vertical bar(1+epsilon)). We describe practical optimizations that allow us to handle larger discriminants than other methods, with vertical bar D vertical bar as large as 10(13) and h(D) up to 10(6). We apply these results to construct pairing-friendly elliptic curves of prime order, using the CM method.
引用
收藏
页码:501 / 538
页数:38
相关论文
共 71 条
  • [1] [Anonymous], 1989, J. Amer. Math. Soc.
  • [2] [Anonymous], 2006, Handbook of Elliptic and Hyperelliptic Curve Cryptography
  • [3] [Anonymous], 2003, Modern Computer Algebra
  • [4] [Anonymous], 1999, LONDON MATH SOC LECT
  • [5] ELLIPTIC-CURVES AND PRIMALITY PROVING
    ATKIN, AOL
    MORAIN, F
    [J]. MATHEMATICS OF COMPUTATION, 1993, 61 (203) : 29 - 68
  • [6] ATKIN AOL, 1993, MATH COMPUT, V60, P399, DOI 10.1090/S0025-5718-1993-1140645-1
  • [7] BACH E, 1990, MATH COMPUT, V55, P355, DOI 10.1090/S0025-5718-1990-1023756-8
  • [8] Belding J, 2008, LECT NOTES COMPUT SC, V5011, P282, DOI 10.1007/978-3-540-79456-1_19
  • [9] Bernstein DJ, 2006, MATH COMPUT, V76, P443
  • [10] Efficient CM-constructions of elliptic curves over finite fields
    Broeker, Reinier
    Stevenhagen, Peter
    [J]. MATHEMATICS OF COMPUTATION, 2007, 76 (260) : 2161 - 2179