From Representations of the Rational Cherednik Algebra to Parabolic Hilbert Schemes via the Dunkl-Opdam Subalgebra

被引:2
作者
Gorsky, E. [1 ]
Simental, J. [2 ]
Vazirani, M. [1 ]
机构
[1] Univ Calif Davis, Dept Math, One Shields Ave, Davis, CA 95616 USA
[2] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
关键词
PLANE CURVE SINGULARITY; AFFINE SPRINGER FIBERS; QUIVER GAUGE-THEORIES; COULOMB BRANCHES; HECKE ALGEBRAS; SIMPLE MODULES; PERMUTATIONS; VARIETIES; OPERATORS; HOMOLOGY;
D O I
10.1007/s00031-022-09743-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we explicitly construct an action of the rational Cherednik algebra H-1,H-m/n (S-n, C-n) corresponding to the permutation representation of S-n on the C*-equivariant homology of parabolic Hilbert schemes of points on the plane curve singularity {x(m) = y(n)} for coprime m and n. We use this to construct actions of quantized Gieseker algebras on parabolic Hilbert schemes on the same plane curve singularity, and actions of the Cherednik algebra at t = 0 on the equivariant homology of parabolic Hilbert schemes on the non-reduced curve { y(n) = 0}. Our main tool is the study of the combinatorial representation theory of the rational Cherednik algebra via the subalgebra generated by Dunkl-Opdam elements
引用
收藏
页码:1 / 70
页数:70
相关论文
共 62 条
[1]   Irreducible modules for the degenerate double affine Hecke algebra of type A as submodules of Verma modules [J].
Balagovic, Martina .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 133 :97-138
[2]  
Berest Y, 2003, INT MATH RES NOTICES, V2003, P1053
[3]  
Bjorner A., 2005, Combinatorics of Coxeter Groups, V231, DOI 10.1007/3-540-27596-7
[4]   Towards a mathematical definition of Coulomb branches of 3-dimensional N=4 gauge theories, II [J].
Braverman, Alexander ;
Finkelberg, Michael ;
Nakajima, Hiraku .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 22 (05) :1071-1147
[5]  
Brion M, 2000, MICH MATH J, V48, P77
[6]   Symmetric functions, parabolic category O, and the springer fiber [J].
Brundan, Jonathan .
DUKE MATHEMATICAL JOURNAL, 2008, 143 (01) :41-79
[7]   Cohomology of Spaltenstein varieties [J].
Brundan, Jonathan ;
Ostrik, Victor .
TRANSFORMATION GROUPS, 2011, 16 (03) :619-648
[8]  
Calaque D, 2009, PROG MATH, V269, P165, DOI 10.1007/978-0-8176-4745-2_5
[9]  
Carlsson E, 2020, MATH ANN, V376, P1303, DOI 10.1007/s00208-019-01898-1
[10]  
Cherednik I., 1997, SELECTA MATH, V3, P459