A broadband and high throughput single-monochromator Raman spectrometer: Application for single-wall carbon nanotubes

被引:17
作者
Fabian, Gabor [1 ]
Kramberger, Christian [2 ]
Friedrich, Alexander [2 ]
Simon, Ferenc [1 ,2 ]
Pichler, Thomas [2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Phys, H-1111 Budapest, Hungary
[2] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
基金
欧洲研究理事会;
关键词
SPECTROSCOPY;
D O I
10.1063/1.3544023
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present a high sensitivity single-monochromator Raman spectrometer which allows operation with a tunable laser source. The instrument is based on the modification of a commercial Raman spectrometer; such instruments operate with interference Rayleigh filters which also act as laser mirrors and are usually considered as inherently narrow band. In our design, the two tasks are separated and the filter can be freely rotated without much effect on the light alignment. Since rotation shifts the filter passband, this modification allows tunable operation with efficient stray light filtering down to 150 cm(-1). The design is optimized for single-wall carbon nanotubes, for which the performance is demonstrated using a tunable dye laser source. The spectrometer thus combines the high sensitivity with the broadband characteristics of usual triple monochromator systems. (C) 2011 American Institute of Physics. [doi:10.1063/1.3544023]
引用
收藏
页数:5
相关论文
共 14 条
[1]  
CAREY PR, 1978, Q REV BIOPHYS, V11, P309, DOI 10.1017/S0033583500002298
[2]   Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy [J].
Doorn, Stephen K. ;
Araujo, Paulo T. ;
Hata, Kenji ;
Jorio, Ado .
PHYSICAL REVIEW B, 2008, 78 (16)
[3]   Raman spectroscopy of carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Saito, R ;
Jorio, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 409 (02) :47-99
[4]   Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects [J].
Fantini, C ;
Jorio, A ;
Souza, M ;
Strano, MS ;
Dresselhaus, MS ;
Pimenta, MA .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :147406-1
[5]   Laser Raman and resonance Raman spectroscopies of natural semiconductor mineral cinnabar, α-HgS, from various mines [J].
Gotoshia, Sergo V. ;
Gotoshia, Lamara V. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (11)
[6]   Polarized Raman study of single-wall semiconducting carbon nanotubes [J].
Jorio, A ;
Dresselhaus, G ;
Dresselhaus, MS ;
Souza, M ;
Dantas, MSS ;
Pimenta, MA ;
Rao, AM ;
Saito, R ;
Liu, C ;
Cheng, HM .
PHYSICAL REVIEW LETTERS, 2000, 85 (12) :2617-2620
[7]   Determination of SWCNT diameters from the Raman response of the radial breathing mode [J].
Kuzmany, H ;
Plank, W ;
Hulman, M ;
Kramberger, C ;
Grüneis, A ;
Pichler, T ;
Peterlik, H ;
Kataura, H ;
Achiba, Y .
EUROPEAN PHYSICAL JOURNAL B, 2001, 22 (03) :307-320
[8]  
Martin RM., 1983, RESONANT RAMAN SCATT, P79
[9]   High performance resonance Raman spectroscopy using volume Bragg gratings as tunable light filters [J].
Paillet, Matthieu ;
Meunier, Francois ;
Verhaegen, Marc ;
Blais-Ouellette, Sebastien ;
Martel, Richard .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (05)
[10]   Diameter-selective Raman scattering from vibrational modes in carbon nanotubes [J].
Rao, AM ;
Richter, E ;
Bandow, S ;
Chase, B ;
Eklund, PC ;
Williams, KA ;
Fang, S ;
Subbaswamy, KR ;
Menon, M ;
Thess, A ;
Smalley, RE ;
Dresselhaus, G ;
Dresselhaus, MS .
SCIENCE, 1997, 275 (5297) :187-191