Microstructure and corrosion resistance of Ni-Cu alloy fabricated through wire arc additive manufacturing

被引:36
作者
Kannan, A. Rajesh [1 ]
Kumar, S. Mohan [2 ]
Pramod, R. [1 ]
Shanmugam, N. Siva [1 ]
Vishnukumar, M. [3 ]
Channabasavanna, S. G. [4 ]
机构
[1] Natl Inst Technol, Dept Mech Engn, Tiruchirappalli 620015, Tamil Nadu, India
[2] Chennai Inst Technol, Ctr Addit Mfg, Chennai 600069, Tamil Nadu, India
[3] Natl Inst Technol, Dept Met & Mat Engn, Tiruchirappalli 620015, Tamil Nadu, India
[4] JSS Sci & Technol Univ, Sri Jayachamarajendra Coll Engn, Dept Mech Engn, Mysuru 570006, Karnataka, India
关键词
Wire arc additive manufacturing; Ni-Cu alloy; Welding; Microstructure; Corrosion;
D O I
10.1016/j.matlet.2021.131262
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire arc additive manufacturing (WAAM) technology is a promising low-cost process for fabricating or restoring marine structures with Ni-Cu alloy. In this work, single pass multi-layer wall of Monel FM60 was deposited with WAAM process. The micrographs revealed the presence of equiaxed and elongated columnar dendrites with minor amount of Cu segregation in Ni-Cu matrix. Due to the complex cyclic thermal history, the microstructure varied along the building direction (BD) and the secondary dendrite arm spacing (SDAS) ranged between 5 and 15 mu m. Energy Dispersive X-Ray Analysis (EDS) results confirmed the existence of tiny Ti-rich particles within the Ni-Cu matrix. The WAAM processed Monel FM60 specimens (0.40-0.62 mpy) exhibited better corrosion resistance compared to traditional Monel 400 alloy (0.57-0.67 mpy) in 3.5% NaCl solution. The enhanced corrosion resistance is corroborated to the retaining of strengthening elements in WAAM specimens and the pit size ranged between 40 and 80 mu m.
引用
收藏
页数:4
相关论文
共 18 条
[1]  
Chen S, 2020, MATER LETT, V287
[2]   Improving arc stability during wire arc additive manufacturing of thin-walled titanium components [J].
Choudhury, Shakti Swaroop ;
Marya, Surendar K. ;
Amirthalingam, Murugaiyan .
JOURNAL OF MANUFACTURING PROCESSES, 2021, 66 :53-69
[3]  
Davis J.R., 2000, Superalloys, ASM Spe. Handb.- Nickel, Cobalt Their Alloys, P349, DOI 10.1361/ncta2000p003
[4]   Effect of post heat treatment on the microstructure and mechanical properties of wire-arc additively manufactured A357 alloy components [J].
Fang, Xuewei ;
Li, Hui ;
Li, Xiaoge ;
Huang, Ke ;
Zhang, Lijuan ;
Lu, Bingheng .
MATERIALS LETTERS, 2020, 269
[5]  
Fontana M. G., 1986, Corrosion Engineering
[6]   Studies on Super Duplex Stainless Steel Manufactured by Wire Arc Additive Manufacturing [J].
Kannan, A. Rajesh ;
Shanmugam, N. Siva ;
Ramkumar, K. Devendranath ;
Rajkumar, V .
TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2021, 74 (07) :1673-1681
[7]   Effect of chemical composition on microstructure, strength and wear resistance of wire deposited Ni-Cu alloys [J].
Marenych, O. O. ;
Ding, D. ;
Pan, Z. ;
Kostryzhev, A. G. ;
Li, H. ;
van Duin, S. .
ADDITIVE MANUFACTURING, 2018, 24 :30-36
[8]   Precipitation Strengthening in Ni-Cu Alloys Fabricated Using Wire Arc Additive Manufacturing Technology [J].
Marenych, Olexandra ;
Kostryzhev, Andrii ;
Shen, Chen ;
Pan, Zengxi ;
Li, Huijun ;
van Duin, Stephen .
METALS, 2019, 9 (01)
[9]   Gas Metal Arc Welding Modes in Wire Arc Additive Manufacturing of Ti-6Al-4V [J].
Panchenko, Oleg ;
Kurushkin, Dmitry ;
Isupov, Fedor ;
Naumov, Anton ;
Kladov, Ivan ;
Surenkova, Margarita .
MATERIALS, 2021, 14 (09)
[10]   Fabrication, characterisation, and finite element analysis of cold metal transfer-based wire and arc additive-manufactured aluminium alloy 4043 cylinder [J].
Pramod, R. ;
Kumar, S. Mohan ;
Girinath, B. ;
Kannan, A. Rajesh ;
Kumar, N. Pravin ;
Shanmugam, N. Siva .
WELDING IN THE WORLD, 2020, 64 (11) :1905-1919