Boundary regularity for manifold constrained p(x)-harmonic maps

被引:13
作者
Chlebicka, Iwona [1 ]
De Filippis, Cristiana [2 ]
Koch, Lukas [3 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
[2] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[3] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2021年 / 104卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
35J25 (primary); 35J60; 35J70 (secondary); HARMONIC OBSTACLE PROBLEMS; HOLDER CONTINUITY; MINIMIZERS; FUNCTIONALS; STATIONARY; MAPPINGS; MINIMA;
D O I
10.1112/jlms.12499
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove partial and full boundary regularity for manifold constrained p(x)-harmonic maps.
引用
收藏
页码:2335 / 2375
页数:41
相关论文
共 50 条
  • [41] Boundary Value Problems for Dirac-Harmonic Maps and Their Heat Flows
    Liu, Lei
    Zhu, Miaomiao
    VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (02) : 577 - 596
  • [42] Ginzburg-Landau Relaxation for Harmonic Maps on Planar Domains into a General Compact Vacuum Manifold
    Monteil, Antonin
    Rodiac, Remy
    Van Schaftingen, Jean
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 242 (02) : 875 - 935
  • [43] Local regularity and compactness for the p-harmonic map heat flows
    Misawa, Masashi
    ADVANCES IN CALCULUS OF VARIATIONS, 2018, 11 (03) : 223 - 255
  • [44] Second order regularity for the p(x)-Laplace operator
    Challal, S.
    Lyaghfouri, A.
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (10) : 1270 - 1279
  • [45] GRAPHS OF BOUNDED DEGREE AND THE p-HARMONIC BOUNDARY
    Puls, Michael J.
    PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (02) : 429 - 452
  • [46] Everywhere regularity for p-harmonic type systems under the subcritical growth
    Zheng, Shenzhou
    Zhang, Laping
    Feng, Zhaosheng
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (01) : 107 - 117
  • [47] Application of p-regularity theory to nonlinear boundary value problems
    Grzegorczyk, Wieslaw
    Medak, Beata
    Tret'yakov, Alexey A.
    BOUNDARY VALUE PROBLEMS, 2013,
  • [48] Nehari manifold for singular fractional p(x,.)-Laplacian problem
    Chammem, R.
    Ghanmi, A.
    Sahbani, A.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (09) : 1603 - 1625
  • [49] A HYPERSURFACE DEFECT RELATION FOR A FAMILY OF MEROMORPHIC MAPS ON A GENERALIZED p-PARABOLIC MANIFOLD
    Han, Qi
    COLLOQUIUM MATHEMATICUM, 2015, 139 (01) : 95 - 110
  • [50] Regularity results of the thin obstacle problem for the p(x)-Laplacian
    Byun, Sun-Sig
    Lee, Ki-Ahm
    Oh, Jehan
    Park, Jinwan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (02) : 496 - 519