Bayesian posterior misclassification error risk distributions for ensemble classifiers

被引:4
作者
Pendharkar, Parag C. [1 ]
机构
[1] Penn State Univ Harrisburg, Sch Business Adm, 777 West Harrisburg Pike, Middletown, PA 17057 USA
关键词
Misclassification cost risk; Ensembles; Classification; SPECIAL-ISSUE; MANAGEMENT; INTELLIGENCE; RECOGNITION;
D O I
10.1016/j.engappai.2016.09.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Computing risk-based misclassification error density distribution for ensembles is an important yet difficult task. Bayesian methods provide one way to estimate these density distributions. In this paper, Bayesian modeling approach is used to compute posterior misclassification error density distributions for both binary and non binary classifiers. Real-world datasets and holdout samples are used to illustrate computation of posterior misclassification error distributions. These posterior error distributions are very useful to compare ensembles, and provide risk-based misclassification cost estimates. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:484 / 492
页数:9
相关论文
共 27 条
[1]  
[Anonymous], 2006, Introduction to Data Mining
[2]   Inductive, evolutionary, and neural computing techniques for discrimination: A comparative study [J].
Bhattacharyya, S ;
Pendharkar, PC .
DECISION SCIENCES, 1998, 29 (04) :871-899
[3]  
Brehnan L., 1984, CLASSIFICATION REGRE
[4]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140
[5]   Novel Cost-Sensitive Approach to Improve the Multilayer Perceptron Performance on Imbalanced Data [J].
Castro, Cristiano L. ;
Braga, Antonio P. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (06) :888-899
[6]   GEOMETRICAL AND STATISTICAL PROPERTIES OF SYSTEMS OF LINEAR INEQUALITIES WITH APPLICATIONS IN PATTERN RECOGNITION [J].
COVER, TM .
IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (03) :326-&
[8]   Robust statistical recognition and reconstruction scheme based on hierarchical Bayesian learning of HRR radar target signal [J].
Du, Lan ;
Wang, Penghui ;
Zhang, Lei ;
He, Hua ;
Liu, Hongwei .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (14) :5860-5873
[9]  
Haykin S., 1999, NEURAL NETWORK COMPR
[10]  
Lessmann S, 2006, IEEE IJCNN, P347