κ-Deformed Phase Space, Hopf Algebroid and Twisting

被引:33
作者
Juric, Tajron [1 ]
Kovacevic, Domagoj [2 ]
Meljanac, Stjepan [1 ]
机构
[1] Rudjer Boskovic Inst, HR-10000 Zagreb, Croatia
[2] Univ Zagreb, Fac Elect Engn & Comp, HR-10000 Zagreb, Croatia
基金
欧盟地平线“2020”;
关键词
noncommutative space; kappa-Minkowski spacetime; Hopf algebroid; kappa-Poincare algebra; realizations; twist; MINKOWSKI SPACETIME; DIFFERENTIAL STRUCTURE; FIELD-THEORY; POINCARE; RELATIVITY; REALIZATIONS; DEFORMATION; STATISTICS; SCALE;
D O I
10.3842/SIGMA.2014.106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion of twist is analyzed for kappa-deformed phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid setting reproduces the full Hopf algebra structure of kappa-Poincare algebra. Several examples of realizations are worked out in details.
引用
收藏
页数:18
相关论文
共 50 条
[31]   Fun from None: Deformed Symmetries and Fock Space [J].
Arzano, Michele .
PLANCK SCALE, 2009, 1196 :1-9
[32]   Energy Spectrum and Phase Transition of Superfluid Fermi Gas of Atoms on Noncommutative Space [J].
Miao, Yan-Gang ;
Wang, Hui .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2014, 10
[33]   Quantisation of Klein-Gordon field in κ space-time: deformed oscillators and Unruh effect [J].
Harikumar, E. ;
Rajagopal, Vishnu .
EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (09)
[34]   Shifts on a deformed Hilbert space [J].
Das, PK .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (01) :47-50
[35]   Shifts on a Deformed Hilbert Space [J].
P. K. Das .
International Journal of Theoretical Physics, 2000, 39 :47-50
[36]   Deformed phase spaces with group valued momenta [J].
Arzano, Michele ;
Nettel, Francisco .
PHYSICAL REVIEW D, 2016, 94 (08)
[37]   Lie algebra type noncommutative phase spaces are Hopf algebroids [J].
Meljanac, Stjepan ;
Skoda, Zoran ;
Stojic, Martina .
LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (03) :475-503
[38]   An Introduction to κ-Deformed Symmetries, Phase Spaces and Field Theory [J].
Arzano, Michele ;
Kowalski-Glikman, Jerzy .
SYMMETRY-BASEL, 2021, 13 (06)
[39]   Eigenvectors of Backwardshift on a Deformed Hilbert Space [J].
P. K. Das .
International Journal of Theoretical Physics, 1998, 37 :2363-2369
[40]   Deformed Schrödinger symmetry on noncommutative space [J].
R. Banerjee .
The European Physical Journal C - Particles and Fields, 2006, 47 :541-545