κ-Deformed Phase Space, Hopf Algebroid and Twisting

被引:33
作者
Juric, Tajron [1 ]
Kovacevic, Domagoj [2 ]
Meljanac, Stjepan [1 ]
机构
[1] Rudjer Boskovic Inst, HR-10000 Zagreb, Croatia
[2] Univ Zagreb, Fac Elect Engn & Comp, HR-10000 Zagreb, Croatia
基金
欧盟地平线“2020”;
关键词
noncommutative space; kappa-Minkowski spacetime; Hopf algebroid; kappa-Poincare algebra; realizations; twist; MINKOWSKI SPACETIME; DIFFERENTIAL STRUCTURE; FIELD-THEORY; POINCARE; RELATIVITY; REALIZATIONS; DEFORMATION; STATISTICS; SCALE;
D O I
10.3842/SIGMA.2014.106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion of twist is analyzed for kappa-deformed phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid setting reproduces the full Hopf algebra structure of kappa-Poincare algebra. Several examples of realizations are worked out in details.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Probability Operator Measure and Phase Measurement in a Deformed Hilbert Space
    P. K. Das
    International Journal of Theoretical Physics, 2000, 39 : 1037 - 1048
  • [22] Probability operator measure and phase measurement in a deformed Hilbert space
    Das, PK
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (04) : 1037 - 1048
  • [23] Squeezed Vector and Its Phase Distribution in a Deformed Hilbert Space
    P. K. Das
    International Journal of Theoretical Physics, 2001, 40 : 807 - 818
  • [24] Diffusion in κ-deformed space and spectral dimension
    Anjana, V.
    MODERN PHYSICS LETTERS A, 2016, 31 (09)
  • [25] Deformed Quantum Phase Spaces, Realizations, Star Products and Twists
    Meljanac, Stjepan
    Strajn, Rina
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [26] Quantum walks, deformed relativity and Hopf algebra symmetries
    Bisio, Alessandro
    D'Ariano, Giacomo Mauro
    Perinotti, Paolo
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 374 (2068):
  • [27] Late time acceleration in a deformed phase space model of dilaton cosmology
    Vakili, B.
    Pedram, P.
    Jalalzadeh, S.
    PHYSICS LETTERS B, 2010, 687 (2-3) : 119 - 123
  • [28] κ-deformation of phase space; generalized Poincare algebras and R-matrix
    Meljanac, S.
    Samsarov, A.
    Strajn, R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (08):
  • [29] Non-singular Brans-Dicke collapse in deformed phase space
    Rasouli, S. M. M.
    Ziaie, A. H.
    Jalalzadeh, S.
    Moniz, P. V.
    ANNALS OF PHYSICS, 2016, 375 : 154 - 178
  • [30] A cosmological viewpoint on the correspondence between deformed phase-space and canonical quantization
    Khosravi, Nima
    Sepangi, Hamid Reza
    Vakili, Babak
    GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (05) : 1081 - 1102