κ-Deformed Phase Space, Hopf Algebroid and Twisting

被引:33
作者
Juric, Tajron [1 ]
Kovacevic, Domagoj [2 ]
Meljanac, Stjepan [1 ]
机构
[1] Rudjer Boskovic Inst, HR-10000 Zagreb, Croatia
[2] Univ Zagreb, Fac Elect Engn & Comp, HR-10000 Zagreb, Croatia
基金
欧盟地平线“2020”;
关键词
noncommutative space; kappa-Minkowski spacetime; Hopf algebroid; kappa-Poincare algebra; realizations; twist; MINKOWSKI SPACETIME; DIFFERENTIAL STRUCTURE; FIELD-THEORY; POINCARE; RELATIVITY; REALIZATIONS; DEFORMATION; STATISTICS; SCALE;
D O I
10.3842/SIGMA.2014.106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion of twist is analyzed for kappa-deformed phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid setting reproduces the full Hopf algebra structure of kappa-Poincare algebra. Several examples of realizations are worked out in details.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] κ-Poincare Hopf algebra and Hopf algebroid structure of phase space from twist
    Juric, Tajron
    Meljanac, Stjepan
    Strajn, Rina
    PHYSICS LETTERS A, 2013, 377 (38) : 2472 - 2476
  • [2] Twists, realizations and Hopf algebroid structure of κ-deformed phase space
    Juric, Tajron
    Meljanac, Stjepan
    Strajn, Rina
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (05):
  • [3] An alternative notion of Hopf algebroid
    Böhm, G
    HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2005, 239 : 31 - 53
  • [4] The Dual and the Double of a Hopf Algebroid are Hopf Algebroids
    Peter Schauenburg
    Applied Categorical Structures, 2017, 25 : 147 - 154
  • [5] The Dual and the Double of a Hopf Algebroid are Hopf Algebroids
    Schauenburg, Peter
    APPLIED CATEGORICAL STRUCTURES, 2017, 25 (01) : 147 - 154
  • [6] Lie-deformed quantum Minkowski spaces from twists: Hopf-algebraic versus Hopf-algebroid approach
    Lukierski, Jerzy
    Meljanac, Daniel
    Meljanac, Stjepan
    Pikutic, Danijel
    Woronowicz, Mariusz
    PHYSICS LETTERS B, 2018, 777 : 1 - 7
  • [7] Gorenstein global dimension and Hopf algebroid actions
    Wang, Yong
    Li, Fang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (05)
  • [8] κ-deformed covariant quantum phase spaces as Hopf algebroids
    Lukierski, Jerzy
    Skoda, Zoran
    Woronowicz, Mariusz
    PHYSICS LETTERS B, 2015, 750 : 401 - 406
  • [9] κ-deformed phase spaces, Jordanian twists, Lorentz-Weyl algebra, and dispersion relations
    Meljanac, D.
    Meljanac, S.
    Mignemi, S.
    Strajn, R.
    PHYSICAL REVIEW D, 2019, 99 (12)
  • [10] Hopf algebroid symmetry of abstract Frobenius extensions of depth 2
    Böhm, G
    Szlachányi, K
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (11) : 4433 - 4464