Blow-up of solutions to the Patlak-Keller-Segel equation in dimension ν ≥ 2

被引:3
作者
Chen, Li [1 ]
Siedentop, Heinz [2 ]
机构
[1] Univ Mannheim, Math Inst, A5 6, D-68131 Mannheim, Germany
[2] Ludwig Maximilians Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
关键词
Patlak-Keller-Segel equation; Blow-up; Higher dimension; CRITICAL MASS; MODEL; CHEMOTAXIS; IONIZATION; SYSTEM;
D O I
10.1016/j.aml.2017.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a blow-up criterion for the solutions to the v-dimensional Patlak-Keller-Segel equation in the whole space. The condition is new in dimension three and higher. In dimension two it is exactly Dolbeault's and Perthame's blow-up condition, i.e., blow-up occurs if total mass exceeds 8 pi. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:102 / 107
页数:6
相关论文
共 12 条
[1]  
Blanchet A, 2006, ELECTRON J DIFFER EQ
[2]   Optimal critical mass in the two dimensional Keller-Segel model in R2 [J].
Dolbeault, J ;
Perthame, B .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :611-616
[3]  
Tello JI, 2013, ANN SCUOLA NORM-SCI, V12, P833
[4]   ON EXPLOSIONS OF SOLUTIONS TO A SYSTEM OF PARTIAL-DIFFERENTIAL EQUATIONS MODELING CHEMOTAXIS [J].
JAGER, W ;
LUCKHAUS, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (02) :819-824
[5]   MODEL FOR CHEMOTAXIS [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1971, 30 (02) :225-&
[6]   INITIATION OF SLIME MOLD AGGREGATION VIEWED AS AN INSTABILITY [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1970, 26 (03) :399-&
[7]   DYNAMICAL IONIZATION BOUNDS FOR ATOMS [J].
Lenzmann, Enno ;
Lewin, Mathieu .
ANALYSIS & PDE, 2013, 6 (05) :1183-1211
[8]   BOUND ON THE MAXIMUM NEGATIVE IONIZATION OF ATOMS AND MOLECULES [J].
LIEB, EH .
PHYSICAL REVIEW A, 1984, 29 (06) :3018-3028
[9]  
PATLAK CLIFFORD S., 1953, BULL MATH BIOPHYS, V15, P311, DOI 10.1007/BF02476407
[10]  
Perthame B., 2007, TRANSPORT EQUATIONS