Biquaternion division algebras over rational function fields

被引:2
作者
Becher, Karim Johannes [1 ]
机构
[1] Univ Antwerp, Dept Wiskunde, Middelheimlaan 1, B-2020 Antwerp, Belgium
关键词
Milnor K-theory; Quadratic form; Valuation; Ramification; Bezoutian form;
D O I
10.1016/j.jpaa.2019.106282
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E be a field of characteristic different from 2 which is the centre of a quaternion division algebra and which is not euclidean. Then there exists a biquaternion division algebra over the rational function field E(t) which does not contain any quaternion algebra defined over E. The proof is based on the study of Bezoutian forms developed in [1]. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 7 条
[1]  
[Anonymous], 2007, Central Simple Algebras and Galois Cohomology
[2]  
[Anonymous], 2005, ALGEBRA NUMBER THEOR
[3]   Ramification sequences and Bezoutian forms [J].
Becher, Karim Johannes ;
Raczek, Melanie .
JOURNAL OF ALGEBRA, 2017, 476 :26-47
[4]   DEL PEZZO SURFACES WITHOUT A RATIONAL POINT ON A COHOMOLOGICAL DIMENSION BODY [J].
Colliot-Thelene, Jean-Louis ;
Madore, David A. .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2004, 3 (01) :1-16
[5]   Bicyclic algebras of prime exponent over function fields [J].
Kunyavskii, BE ;
Rowen, LH ;
Tikhonov, SV ;
Yanchevskii, VI .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (06) :2579-2610
[6]   ALGEBRAIC K-THEORY AND QUADRATIC FORMS [J].
MILNOR, J .
INVENTIONES MATHEMATICAE, 1970, 9 (04) :318-&
[7]  
Saltman D.J., 1998, J. Ramanujan Math. Soc, V13, P125