Seamless High-Q Microwave Cavities for Multimode Circuit Quantum Electrodynamics

被引:45
|
作者
Chakram, Srivatsan [1 ,2 ,3 ]
Oriani, Andrew E. [1 ,4 ]
Naik, Ravi K. [1 ,2 ,5 ]
Dixit, Akash V. [1 ,2 ]
He, Kevin [1 ,2 ]
Agrawal, Ankur [1 ,2 ]
Kwon, Hyeokshin [6 ]
Schuster, David I. [1 ,2 ,4 ]
机构
[1] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[4] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[5] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[6] Samsung Elect, Samsung Adv Inst Technol, Suwon 16678, South Korea
基金
美国国家科学基金会;
关键词
ERROR-CORRECTION; DYNAMICS; PHOTON; STATES;
D O I
10.1103/PhysRevLett.127.107701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Multimode cavity quantum electrodynamics-where a two-level system interacts simultaneously with many cavity modes-provides a versatile framework for quantum information processing and quantum optics. Because of the combination of long coherence times and large interaction strengths, one of the leading experimental platforms for cavity QED involves coupling a superconducting circuit to a 3D microwave cavity. In this work, we realize a 3D multimode circuit QED system with single photon lifetimes of 2 ms across 9 modes of a novel seamless cavity. We demonstrate a variety of protocols for universal single-mode quantum control applicable across all cavity modes, using only a single drive line. We achieve this by developing a straightforward flute method for creating monolithic superconducting microwave cavities that reduces loss while simultaneously allowing control of the mode spectrum and mode-qubit interaction. We highlight the flexibility and ease of implementation of this technique by using it to fabricate a variety of 3D cavity geometries, providing a template for engineering multimode quantum systems with exceptionally low dissipation. This work is an important step towards realizing hardware efficient random access quantum memories and processors, and for exploring quantum many-body physics with photons.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] High-Q/V air-mode photonic crystal cavities at microwave frequencies
    Zhang, Yinan
    Bulu, Irfan
    Tam, Wai-Ming
    Levitt, Ben
    Shah, Jagdish
    Botto, Tancredi
    Loncar, Marko
    OPTICS EXPRESS, 2011, 19 (10): : 9371 - 9377
  • [22] Strategies and Trade-Offs for Controllability and Memory Time of Ultra-High-Quality Microwave Cavities in Circuit Quantum Electrodynamics
    Pietikainen, Iivari
    Cernotik, Ondrej
    Eickbusch, Alec
    Maiti, Aniket
    Garmon, John W. O.
    Filip, Radim
    Girvin, Steven M.
    PRX QUANTUM, 2024, 5 (04):
  • [23] THEORY OF HIGH-Q OPEN CAVITIES EXCITATION
    KATSENELENBAUM, BZ
    SIVOV, AN
    RADIOTEKHNIKA I ELEKTRONIKA, 1974, 19 (12): : 2449 - 2457
  • [24] High-Q cavities in photosensitive photonic crystals
    Tomljenovic-Hanic, Snjezana
    Steel, M. J.
    de Sterke, C. Martijn
    Moss, David J.
    OPTICS LETTERS, 2007, 32 (05) : 542 - 544
  • [25] HIGH-Q TUNED CIRCUIT SIMULATOR
    VERRAZZA.L
    ELECTRONIC ENGINEERING, 1969, 41 (492): : 232 - &
  • [26] HIGH-Q PROGRAMMABLE TUNED CIRCUIT
    HILL, JJ
    ELECTRONIC ENGINEERING, 1975, 47 (568): : 25 - &
  • [27] Random access quantum information processors using multimode circuit quantum electrodynamics
    Naik, R. K.
    Leung, N.
    Chakram, S.
    Groszkowski, Peter
    Lu, Y.
    Earnest, N.
    McKay, D. C.
    Koch, Jens
    Schuster, D. I.
    NATURE COMMUNICATIONS, 2017, 8
  • [28] Random access quantum information processors using multimode circuit quantum electrodynamics
    R. K. Naik
    N. Leung
    S. Chakram
    Peter Groszkowski
    Y. Lu
    N. Earnest
    D. C. McKay
    Jens Koch
    D. I. Schuster
    Nature Communications, 8
  • [29] High-Q optical microwave filter
    You, N
    Minasian, RA
    ELECTRONICS LETTERS, 1999, 35 (24) : 2125 - 2126
  • [30] High-Q optical microwave filter
    Electron. Lett., 24 (2125-2126):