LINEAR COMPLEMENTARY DUAL CODES AND DOUBLE CIRCULANT CODES OVER A SEMI-LOCAL RING

被引:3
作者
Cheng, X. I. A. N. G. D. O. N. G. [1 ]
Cao, X. I. W. A. N. G. [1 ,2 ]
Qian, L. I. Q. I. N. [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut Nanjing, Sch Math, Nanjing 211106, Jiangsu, Peoples R China
[2] Key Lab Math Modelling NUAA & High Performance Com, Nanjing 211106, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Cyclic code; Gray map; LCD code; LCD double circulant code; CYCLIC CODES; LCD CODES;
D O I
10.3934/amc.2022055
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let q be an odd prime power and F-q be the finite field with q elements. In this paper, suppose ring R = F-q + mu F-q + nu F-q + mu nu F-q, where mu nu = nu mu, mu(2) =mu, nu(2) = nu. We first give a Gray map from R onto F4q and consider a decomposition of the ring R. Additionally, we investigate linear complementary dual (LCD) codes over the ring R. Some conditions for such linear codes over R to be linear complementary dual are given. Furthermore, based on the Artin conjecture, we get a class of good codes by calculating the total number of LCD double circulant codes over R.
引用
收藏
页码:1010 / 1021
页数:12
相关论文
共 20 条
[1]   COMPLEMENTARY DUAL CODES FOR COUNTER-MEASURES TO SIDE-CHANNEL ATTACKS [J].
Carlet, Claude ;
Guilley, Sylvain .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (01) :131-150
[2]   Codes over an infinite family of rings with a Gray map [J].
Cengellenmis, Yasemin ;
Dertli, Abdullah ;
Dougherty, S. T. .
DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (03) :559-580
[3]  
Dertli A., 2015, PALEST J MATH, V4, P547
[4]  
Dougherty ST., 2017, Int J Inf Coding Theory, V4, P116
[5]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[6]  
Huffman WC., 2010, Fundamentals of Error-Correcting Codes, DOI [10.1017/CBO9780511807077, DOI 10.1017/CBO9780511807077]
[7]   (1+v)-Constacyclic codes over F2 + uF2 + vF2 + uvF2 [J].
Karadeniz, Suat ;
Yildiz, Bahattin .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (09) :2625-2632
[8]   Cyclic codes over the ring Zp[u, v]/[u2, v2, uv-vu] [J].
Kewat, Pramod Kumar ;
Ghosh, Bappaditya ;
Pattanayak, Sukhamoy .
FINITE FIELDS AND THEIR APPLICATIONS, 2015, 34 :161-175
[9]   Classification of cyclic codes over a non-Galois chain ring Zp [u] / ⟨u3⟩ [J].
Kim, Boran ;
Lee, Yoonjin ;
Doo, Jisoo .
FINITE FIELDS AND THEIR APPLICATIONS, 2019, 59 :208-237
[10]   On the algebraic structure of quasi-cyclic codes II:: Chain rings [J].
Ling, S ;
Solé, P .
DESIGNS CODES AND CRYPTOGRAPHY, 2003, 30 (01) :113-130