Linear maps on Mn (C) preserving the local spectrum

被引:37
作者
Gonzalez, Manuel
Mbekhta, Mostafa [1 ]
机构
[1] Univ Lille 1, UFR Math, F-59655 Villeneuve Dascq, France
[2] Univ Cantabria, Fac Ciencias, Dept Math, E-39071 Santander, Spain
关键词
linear maps preserving the local spectrum;
D O I
10.1016/j.laa.2007.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let x(0) is an element of C-n be a nonzero vector. We prove that if a linear map phi : M-n (C) -> M-n (C) preserves the local spectrum at x(0); i.e., sigma(T) (x(0)) = sigma(phi(T)) (x(0)) for all T is an element of M-n (C), then there exists an invertible matrix A such that A(x(0)) = x(0) and phi(T) = AT A(-1) for every T. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:176 / 182
页数:7
相关论文
共 18 条
[1]  
Aiena P., 2004, Fredholm and Local Spectral Theory, with Applications to Multipliers
[2]  
[Anonymous], BANACH CTR PUBLICATI
[3]   Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras [J].
Aupetit, B .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 :917-924
[4]  
AUPETIT B, 1991, PRIMER SPECTRAL THEO
[5]  
AUPETIT B, 1988, TRANSFORMATIONS QUI, V97, P55
[6]   Additive maps preserving local spectrum [J].
Bourhim, Abdellatif ;
Ransford, Thomas .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 55 (03) :377-385
[7]  
Bresar M., 1997, Banach Center Publ., V38, P49
[8]  
Dieudonne J., 1948, Archiv der Mathematik, V1, P282, DOI DOI 10.1007/BF02038756
[9]  
Frobenius G., 1897, Sitzungsber. Preuss. Akad. Wiss. Berlin, P994
[10]   Some general techniques on linear preserver problems [J].
Guterman, A ;
Li, CK ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 315 (1-3) :61-81