Extended Crossover from a Fermi Liquid to a Quasiantiferromagnet in the Half-Filled 2D Hubbard Model

被引:64
作者
Simkovic, Fedor [1 ]
LeBlanc, J. P. F. [2 ]
Kim, Aaram J. [1 ]
Deng, Youjin [3 ,4 ]
Prokof'ev, N. V. [5 ,6 ]
Svistunov, B. V. [5 ,6 ,7 ,8 ]
Kozik, Evgeny [1 ]
机构
[1] Kings Coll London, Dept Phys, London WC2R 2LS, England
[2] Mem Univ Newfoundland, Dept Phys & Phys Oceanog, St John, NF A1B 3X7, Canada
[3] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[5] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[6] Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia
[7] Shanghai Jiao Tong Univ, Sch Phys & Astron, Wilczek Quantum Ctr, Shanghai 200240, Peoples R China
[8] Shanghai Jiao Tong Univ, TD Lee Inst, Shanghai 200240, Peoples R China
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
GASES;
D O I
10.1103/PhysRevLett.124.017003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ground state of the Hubbard model with nearest-neighbor hopping on the square lattice at half filling is known to be that of an antiferromagnetic (AFM) band insulator for any on-site repulsion. At finite temperature, the absence of long-range order makes the question of how the interaction-driven insulator is realized nontrivial. We address this problem with controlled accuracy in the thermodynamic limit using self-energy diagrammatic determinant Monte Carlo and dynamical cluster approximation methods and show that development of long-range AFM correlations drives an extended crossover from Fermi liquid to insulating behavior in the parameter regime that precludes a metal-to-insulator transition. The intermediate crossover state is best described as a non-Fermi liquid with a partially gapped Fermi surface.
引用
收藏
页数:6
相关论文
共 43 条
[1]  
Abrikosov A, 1975, Quantum Field Theoretical Methods in Statistical Physics
[2]   A cold-atom Fermi-Hubbard antiferromagnet [J].
Azurenko, Anton M. ;
Chiu, Christie S. ;
Ji, Geoffrey ;
Parsons, Maxwell F. ;
Kanasz-Nagy, Marton ;
Schmidt, Richard ;
Grusdt, Fabian ;
Demler, Eugene ;
Greif, Daniel ;
Greiner, Markus .
NATURE, 2017, 545 (7655) :462-+
[3]   APPLICATION OF PADE APPROXIMANT METHOD TO INVESTIGATION OF SOME MAGNETIC PROPERTIES OF ISING MODEL [J].
BAKER, GA .
PHYSICAL REVIEW, 1961, 124 (03) :768-&
[4]   Ultracold quantum gases in optical lattices [J].
Bloch, I .
NATURE PHYSICS, 2005, 1 (01) :23-30
[5]   Effects of interaction strength, doping, and frustration on the antiferromagnetic phase of the two-dimensional Hubbard model [J].
Fratino, L. ;
Charlebois, M. ;
Semon, P. ;
Sordi, G. ;
Tremblay, A. -M. S. .
PHYSICAL REVIEW B, 2017, 96 (24)
[6]   Thermodynamics of the 3D Hubbard Model on Approaching the Neel Transition [J].
Fuchs, Sebastian ;
Gull, Emanuel ;
Pollet, Lode ;
Burovski, Evgeni ;
Kozik, Evgeny ;
Pruschke, Thomas ;
Troyer, Matthias .
PHYSICAL REVIEW LETTERS, 2011, 106 (03)
[7]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[8]   Formation and Dynamics of Antiferromagnetic Correlations in Tunable Optical Lattices [J].
Greif, Daniel ;
Jotzu, Gregor ;
Messer, Michael ;
Desbuquois, Remi ;
Esslinger, Tilman .
PHYSICAL REVIEW LETTERS, 2015, 115 (26)
[9]   Superconductivity and the Pseudogap in the Two-Dimensional Hubbard Model [J].
Gull, Emanuel ;
Parcollet, Olivier ;
Millis, Andrew J. .
PHYSICAL REVIEW LETTERS, 2013, 110 (21)
[10]   Fluctuation Diagnostics of the Electron Self-Energy: Origin of the Pseudogap Physics [J].
Gunnarsson, O. ;
Schaefer, T. ;
LeBlanc, J. P. F. ;
Gull, E. ;
Merino, J. ;
Sangiovanni, G. ;
Rohringer, G. ;
Toschi, A. .
PHYSICAL REVIEW LETTERS, 2015, 114 (23)