Jute stick pyrolysis for bio-oil production in fluidized bed reactor

被引:108
|
作者
Asadullah, M. [1 ]
Rahman, M. Anisur [1 ]
Ali, M. Mohsin [1 ]
Motin, M. Abdul [1 ]
Sultan, M. Borhanus [1 ]
Alam, M. Robiul [1 ]
Rahman, M. Sahedur [1 ]
机构
[1] Rajshahi Univ, Dept Appl Chem & Chem Technol, Rajshahi 6205, Bangladesh
关键词
jute stick; pyrolysis; bio-oil; renewable fuel; fluidized-bed reactor;
D O I
10.1016/j.biortech.2006.12.002
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Pyrolysis of jute stick for bio-oil production has been investigated in a continuous feeding fluidized bed reactor at different temperatures ranging from 300 degrees C to 600 degrees C. At 500 degrees C, the yields of bio-oil, char and non-condensable gas were 66.70 wt%, 22.60 wt% and 10.70 wt%, respectively based on jute stick. The carbon based non-condensable gas was the mixture of carbon monoxide, carbon dioxide, methane, ethane, ethene, propane and propene. The density and viscosity of bio-oil were found to be 1.11 g/mL and 2.34 cP, respectively. The lower heating value (LHV) of bio-oil was found to be 18.25 MJ/kg. Since bio-oil contains some organic acids such as formic acid, acetic acid, etc., the pH and acid value of the bio-oil were found to be around 4 and 135 mg KOH/g, respectively. The water, lignin, solid and ash contents of bio-oil were determined and found to be around 15 wt%, 4.90 wt%, 0.02 wt% and 0.10 wt%, respectively. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 50 条
  • [1] Flash pyrolysis of biomass for bio-oil in a fluidized bed reactor
    Wang, SR
    Luo, ZY
    Yu, CJ
    Liao, YF
    Hong, J
    Cen, KF
    Dong, LJ
    ENERGY AND ENVIRONMENT, VOLS 1 AND 2, 2003, : 245 - 250
  • [2] Bio-Oil Production from Fast Pyrolysis of Cotton Stalk in Fluidized Bed Reactor
    Ali, Najaf
    Saleem, Mahmood
    Shahzad, Khurram
    Chughtai, Arshad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2015, 40 (11) : 3019 - 3027
  • [3] Bio-oil production from fast pyrolysis of Cladophora glomerata in a fluidized bed reactor
    Ebadi, A. G.
    Hisoriev, H.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2017, 49 (02): : 504 - 508
  • [4] Bio-Oil Production from Fast Pyrolysis of Cotton Stalk in Fluidized Bed Reactor
    Najaf Ali
    Mahmood Saleem
    Khurram Shahzad
    Arshad Chughtai
    Arabian Journal for Science and Engineering, 2015, 40 : 3019 - 3027
  • [5] Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production
    Wang, Kaige
    Brown, Robert C.
    Homsy, Sally
    Martinez, Liliana
    Sidhu, Sukh S.
    BIORESOURCE TECHNOLOGY, 2013, 127 : 494 - 499
  • [6] Bio-oil production via fast pyrolysis of shrub residues in a fluidized-bed reactor
    Yang Haiqing
    Wang Qirui
    Sang Yuqiang
    Fan Guoqiang
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2016, 38 (08) : 1125 - 1131
  • [7] Bio-oil Production from Palm Fronds by Fast Pyrolysis Process in Fluidized Bed Reactor
    Rinaldi, Nino
    Simanungkalit, Sabar P.
    Corneliasari, Kiky S.
    INTERNATIONAL SYMPOSIUM ON APPLIED CHEMISTRY (ISAC) 2016, 2017, 1803
  • [8] Production of Bio-oil from Pine Sawdust by Rapid Pyrolysis in a Fluidized-bed Reactor
    Suttibak, S.
    Sriprateep, K.
    Pattiya, A.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2015, 37 (13) : 1440 - 1446
  • [9] Bed Agglomeration during Bio-oil Fast Pyrolysis in a Fluidized-Bed Reactor
    Gao, Wenran
    Zhang, Mingming
    Wu, Hongwei
    ENERGY & FUELS, 2018, 32 (03) : 3608 - 3613
  • [10] Fast Pyrolysis of Corn Straw for Bio-oil Production in a Bench-scale Fluidized Bed Reactor
    Liu, R.
    Deng, C.
    Wang, J.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2010, 32 (01) : 10 - 19