Uniqueness guarantees for phase retrieval from discrete windowed special affine Fourier transform

被引:1
作者
Zhang, Qingyue [1 ]
Su, Yue [1 ]
Li, Rui [1 ]
机构
[1] Tianjin Univ Technol, Coll Sci, Inst Operat Res & Syst Engn, Tianjin 300384, Peoples R China
来源
OPTIK | 2021年 / 242卷
基金
中国国家自然科学基金;
关键词
Phase retrieval; Non-vanishing signals; PhaseLift operator; Discrete windowed special affine Fourier transform; ALGORITHM;
D O I
10.1016/j.ijleo.2021.167295
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we discuss the problem of phase retrieval in discrete windowed special affine Fourier transform domain, i.e., the problem of recovering a signal from the magnitudes of discrete windowed special affine Fourier transform. We first provide some appropriate conditions under which discrete windowed special affine Fourier transform allows phase retrieval. Then above conditions can be weaken for non-vanishing signals. Finally, the results of numerical simulations illustrate our theoretical analysis and provide some directions for future work.
引用
收藏
页数:8
相关论文
共 25 条
  • [1] Saving phase: Injectivity and stability for phase retrieval
    Bandeira, Afonso S.
    Cahill, Jameson
    Mixon, Dustin G.
    Nelson, Aaron A.
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 37 (01) : 106 - 125
  • [2] Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization
    Bauschke, HH
    Combettes, PL
    Luke, DR
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (07): : 1334 - 1345
  • [3] Blind channel estimation via combining autocorrelation and blind phase estimation
    Baykal, B
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (06) : 1125 - 1131
  • [4] Bendory T., ARXIV160708218
  • [5] Shift-invariant and sampling spaces associated with the special aline Fourier transform
    Bhandari, Ayush
    Zayed, Ahmed I.
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 47 (01) : 30 - 52
  • [6] Phase Retrieval from Gabor Measurements
    Bojarovska, Irena
    Flinth, Axel
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (03) : 542 - 567
  • [7] Special affine Fourier transformation in frequency-domain
    Cai, LZ
    [J]. OPTICS COMMUNICATIONS, 2000, 185 (4-6) : 271 - 276
  • [8] Sparse Phase Retrieval from Short-Time Fourier Measurements
    Eldar, Yonina C.
    Sidorenko, Pavel
    Mixon, Dustin G.
    Barel, Shaby
    Cohen, Oren
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (05) : 638 - 642
  • [9] Fienup C., 1987, IMAGE RECOVERY THEOR
  • [10] PHASE RETRIEVAL ALGORITHMS - A COMPARISON
    FIENUP, JR
    [J]. APPLIED OPTICS, 1982, 21 (15): : 2758 - 2769