Simultaneous type-I and type-II phase matching for second-order nonlinearity in integrated lithium niobate waveguide

被引:21
作者
Briggs, Ian [1 ]
Hou, Songyan [1 ]
Cui, Chaohan [1 ]
Fan, Linran [1 ]
机构
[1] Univ Arizona, Wyant Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
2ND-HARMONIC GENERATION; WAVELENGTH CONVERSION; EFFICIENCY; ENTANGLEMENT; STATES; BBO;
D O I
10.1364/OE.430438
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Second-order optical nonlinearity is widely used for both classical and quantum photonic applications. Due to material dispersion and phase matching requirements, the polarization of optical fields is pre-defined during the fabrication. Only one type of phase matching condition is normally satisfied, and this limits the device flexibility. Here, we demonstrate that phase matching for both type-I and type-II second-order optical nonlinearity can be realized simultaneously in the same waveguide fabricated from thin-film lithium niobate. This is achieved by engineering the geometry dispersion to compensate for the material dispersion and birefringence. The simultaneous realization of both phase matching conditions is verified by the polarization dependence of second-harmonic generation. Correlated photons are also generated through parametric down conversion from the same device. This work provides a novel approach to realize versatile photonic functions with flexible devices. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:26183 / 26190
页数:8
相关论文
共 41 条
[1]  
Aasi J, 2013, NAT PHOTONICS, V7, P613, DOI [10.1038/NPHOTON.2013.177, 10.1038/nphoton.2013.177]
[2]   Optical, spectral and phase-matching properties of BIBO, BBO and LBO crystals for optical parametric oscillation in the visible and near-infrared wavelength ranges [J].
Akbari, R. ;
Major, A. .
LASER PHYSICS, 2013, 23 (03)
[3]   Photonic applications of lithium niobate crystals [J].
Arizmendi, L .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2004, 201 (02) :253-283
[4]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[5]   17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators [J].
Bruch, Alexander W. ;
Liu, Xianwen ;
Guo, Xiang ;
Surya, Joshua B. ;
Gong, Zheng ;
Zhang, Liang ;
Wang, Junxi ;
Yan, Jianchang ;
Tang, Hong X. .
APPLIED PHYSICS LETTERS, 2018, 113 (13)
[6]   Experimental Realization of Multipartite Entanglement of 60 Modes of a Quantum Optical Frequency Comb [J].
Chen, Moran ;
Menicucci, Nicolas C. ;
Pfister, Olivier .
PHYSICAL REVIEW LETTERS, 2014, 112 (12)
[7]  
de Riedmatten H., 2002, QUANT INF COMP
[8]   Quantum sensing [J].
Degen, C. L. ;
Reinhard, F. ;
Cappellaro, P. .
REVIEWS OF MODERN PHYSICS, 2017, 89 (03)
[9]   Spectrotemporal shaping of itinerant photons via distributed nanomechanics [J].
Fan, Linran ;
Zou, Chang-Ling ;
Zhu, Na ;
Tang, Hong X. .
NATURE PHOTONICS, 2019, 13 (05) :323-+
[10]   Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits [J].
Fan, Linran ;
Zou, Chang-Ling ;
Cheng, Risheng ;
Guo, Xiang ;
Han, Xu ;
Gong, Zheng ;
Wang, Sihao ;
Tang, Hong X. .
SCIENCE ADVANCES, 2018, 4 (08)