Polynomial bounds for rings of invariants

被引:34
作者
Derksen, H [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1090/S0002-9939-00-05698-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hilbert proved that invariant rings are finitely generated for linearly reductive groups acting rationally on a finite dimensional vector space. POPOV gave an explicit upper bound for the smallest integer d such that the invariants of degree less than or equal to d generate the invariant ring. This bound has factorial growth. In this paper we will give a bound which depends only polynomially on the input data.
引用
收藏
页码:955 / 963
页数:9
相关论文
共 25 条
[1]  
[Anonymous], 1987, FUNKTSIONAL ANAL PRI
[2]   PICARD GROUP AND EIGENVALUES OF SPHERICAL MANIFOLDS [J].
BRION, M .
DUKE MATHEMATICAL JOURNAL, 1989, 58 (02) :397-424
[3]  
Bruns W., Cambridge Studies in Advanced Mathematics, V39
[4]   Computation of invariants for reductive groups [J].
Derksen, H .
ADVANCES IN MATHEMATICS, 1999, 141 (02) :366-384
[5]  
DERKSEN H, 1997, THESIS BASEL
[6]   LINEAR FREE RESOLUTIONS AND MINIMAL MULTIPLICITY [J].
EISENBUD, D ;
GOTO, S .
JOURNAL OF ALGEBRA, 1984, 88 (01) :89-133
[7]  
FULTON W, 1984, ERGEBN MATH GRENGEBI, V2
[8]  
Gatermann K, 1996, APPL ALGEBR ENG COMM, V7, P105, DOI 10.1007/s002000050022
[9]  
Gordan P., 1868, J. Reine Angew. Math, V69, P323
[10]  
Hilbert David, 1890, MATH ANN, V36, P473