ADVANCED DEEP NETWORKS FOR 3D MITOCHONDRIA INSTANCE SEGMENTATION

被引:6
作者
Li, Mingxing [1 ]
Chen, Chang [1 ]
Liu, Xiaoyu [1 ]
Huang, Wei [1 ]
Zhang, Yueyi [1 ,2 ]
Xiong, Zhiwei [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022) | 2022年
关键词
Electron microscopy; mitochondria; instance segmentation; deep network;
D O I
10.1109/ISBI52829.2022.9761477
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Mitochondria instance segmentation from electron microscopy (EM) images has seen notable progress since the introduction of deep learning methods. In this paper, we propose two advanced deep networks, named Res-UNet-R and Res-UNet-H, for 3D mitochondria instance segmentation from Rat and Human samples. Specifically, we design a simple yet effective anisotropic convolution block and deploy a multi-scale training strategy, which together boost the segmentation performance. Moreover, we enhance the generalizability of the trained models on the test set by adding a denoising operation as pre-processing. In the Large-scale 3D Mitochondria Instance Segmentation Challenge at ISBI 2021, our method ranks the 1st place. Code is available at https://github.com/Limingxing00/MitoEM 2021- Challenge.
引用
收藏
页数:5
相关论文
共 21 条
[1]  
Casser V, 2020, PR MACH LEARN RES, V121, P111
[2]   DCAN: Deep Contour-Aware Networks for Accurate Gland Segmentation [J].
Chen, Hao ;
Qi, Xiaojuan ;
Yu, Lequan ;
Heng, Pheng-Ann .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2487-2496
[3]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[4]  
He K., 2017, P IEEE INT C COMPUTE, P2980, DOI [DOI 10.1109/ICCV.2017.322, 10.1109/ICCV.2017.322]
[5]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[6]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[7]   Learning to Restore ssTEM Images from Deformation and Corruption [J].
Huang, Wei ;
Chen, Chang ;
Xiong, Zhiwei ;
Zhang, Yueyi ;
Liu, Dong ;
Wu, Feng .
COMPUTER VISION - ECCV 2020 WORKSHOPS, PT I, 2020, 12535 :394-410
[8]  
Lee KS, 2017, Arxiv, DOI arXiv:1706.00120
[9]  
Li Zhili, 2021, Contrastive Learning for Mitochondria Segmentation
[10]   Automatic Reconstruction of Mitochondria and Endoplasmic Reticulum in Electron Microscopy Volumes by Deep Learning [J].
Liu, Jing ;
Li, Linlin ;
Yang, Yang ;
Hong, Bei ;
Chen, Xi ;
Xie, Qiwei ;
Han, Hua .
FRONTIERS IN NEUROSCIENCE, 2020, 14