Supersaturation controlled growth of MAFAPbI3 perovskite film for high efficiency solar cells

被引:73
作者
Liu, Dong [1 ,2 ,3 ]
Zhou, Wenjia [1 ]
Tang, Haoying [1 ]
Fu, Pengfei [1 ]
Ning, Zhijun [1 ]
机构
[1] Shanghai Tech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
perovskite solar cell; nucleation and growth; supersaturation; BASE ADDUCT; PERFORMANCE; CRYSTALLIZATION; FABRICATION; CRYSTALS; LAYERS;
D O I
10.1007/s11426-018-9250-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controlling the nucleation and growth of organic-inorganic hybrids perovskite is of key importance to improve the morphology and crystallinity of perovskite films. However, the growth mechanism of perovskite films based on classical crystallization theory is not fully understood. Here, we develop a supersaturation controlled strategy (SCS) to balance the nucleation and crystal growth speeds. By this strategy, we are able to find an ideal supersaturation region to realize a balance of nucleation and crystal growth, which yields highly crystallized perovskite films with micrometer-scale grains. Besides, we provide a thoughtful analysis of nucleation and growth based on the fabrication of the perovskite films. As a result, the highest photovoltaic power conversion efficiencies (PCE) of 19.70% and 20.31% are obtained for the planar and the meso-superstructured devices, respectively. This strategy sheds some light for understanding the film growth mechanism of high quality perovskite film, and it provides a facile strategy to fabricate high efficiency perovskite solar cells.
引用
收藏
页码:1278 / 1284
页数:7
相关论文
共 35 条
[11]   6.5% efficient perovskite quantum-dot-sensitized solar cell [J].
Im, Jeong-Hyeok ;
Lee, Chang-Ryul ;
Lee, Jin-Wook ;
Park, Sang-Won ;
Park, Nam-Gyu .
NANOSCALE, 2011, 3 (10) :4088-4093
[12]  
Jeon Nam Joong, 2014, Nat Mater, V13, P897, DOI 10.1038/nmat4014
[13]   Compositional engineering of perovskite materials for high-performance solar cells [J].
Jeon, Nam Joong ;
Noh, Jun Hong ;
Yang, Woon Seok ;
Kim, Young Chan ;
Ryu, Seungchan ;
Seo, Jangwon ;
Seok, Sang Il .
NATURE, 2015, 517 (7535) :476-+
[14]  
Jiang Q, 2017, NAT ENERGY, V2, P1, DOI [10.1038/NENERGY.2016.177, 10.1038/nenergy.2016.177]
[15]   High Performance of Planar Perovskite Solar Cells Produced from PbI2(DMSO) and PbI2(NMP) Complexes by Intramolecular Exchange [J].
Jo, Yimhyun ;
Oh, Kyoung Suk ;
Kim, Minjin ;
Kim, Ka-Hyun ;
Lee, Heon ;
Lee, Chan-Woo ;
Kim, Dong Suk .
ADVANCED MATERIALS INTERFACES, 2016, 3 (10)
[16]   Spiral surface growth without desorption [J].
Karma, A ;
Plapp, M .
PHYSICAL REVIEW LETTERS, 1998, 81 (20) :4444-4447
[17]   Overcoming the Challenges of Large-Area High-Efficiency Perovskite Solar Cells [J].
Kim, Jincheol ;
Yun, Jae Sung ;
Cho, Yongyoon ;
Lee, Da Seul ;
Wilkinson, Benjamin ;
Soufiani, Arman Mahboubi ;
Deng, Xiaofan ;
Zheng, Jianghui ;
Shi, Adrian ;
Lim, Sean ;
Chen, Sheng ;
Hameiri, Ziv ;
Zhang, Meng ;
Lau, Cho Fai Jonathan ;
Huang, Shujuan ;
Green, Martin A. ;
Ho-Baillie, Anita W. Y. .
ACS ENERGY LETTERS, 2017, 2 (09) :1978-1984
[18]   High-Temperature-Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells [J].
Kim, Minjin ;
Kim, Gi-Hwan ;
Oh, Kyoung Suk ;
Jo, Yimhyun ;
Yoon, Hyun ;
Kim, Ka-Hyun ;
Lee, Heon ;
Kim, Jin Young ;
Kim, Dong Suk .
ACS NANO, 2017, 11 (06) :6057-6064
[19]   Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells [J].
Lee, Jin-Wook ;
Kim, Hui-Seon ;
Park, Nam-Gyu .
ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (02) :311-319
[20]   The Additive Coordination Effect on Hybrids Perovskite Crystallization and High-Performance Solar Cell [J].
Li, Liang ;
Chen, Yihua ;
Liu, Zonghao ;
Chen, Qi ;
Wang, Xindong ;
Zhou, Huanping .
ADVANCED MATERIALS, 2016, 28 (44) :9862-+