Gradient dopant profiling and spectral utilization of monolithic thin-film silicon photoelectrochemical tandem devices for solar water splitting

被引:31
作者
Han, Lihao [1 ,3 ]
Digdaya, Ibadillah A. [2 ]
Buijs, Thom W. F. [1 ]
Abdi, Fatwa F. [2 ]
Huang, Zhuangqun [3 ]
Liu, Rui [3 ]
Dam, Bernard [3 ]
Zeman, Miro [1 ]
Smith, Wilson A. [2 ]
Smets, Arno H. M. [1 ]
机构
[1] Delft Univ Technol, Photovolta Mat & Devices PVMD Lab, NL-2600 GA Delft, Netherlands
[2] Delft Univ Technol, Mat Energy Convers & Storage MECS Lab, NL-2600 GA Delft, Netherlands
[3] CALTECH, JCAP, Pasadena, CA 91125 USA
关键词
HYDROGEN-PRODUCTION; CELL; SI; OPTIMIZATION;
D O I
10.1039/c4ta05523c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A cost-effective and earth-abundant photocathode based on hydrogenated amorphous silicon carbide (a-SiC:H) is demonstrated to split water into hydrogen and oxygen using solar energy. A monolithic a-SiC:H photoelectrochemical (PEC) cathode integrated with a hydrogenated amorphous silicon (a-SiC:H)/nano-crystalline silicon (nc-Si:H) double photovoltaic (PV) junction achieved a current density of -5.1 mA cm(-2) at 0 V versus the reversible hydrogen electrode. The a-SiC:H photocathode used no hydrogen-evolution catalyst and the high current density was obtained using gradient boron doping. The growth of high quality nc-Si:H PV junctions in combination with optimized spectral utilization was achieved using glass substrates with integrated micro-textured photonic structures. The performance of the PEC/PV cathode was analyzed by simulations using Advanced Semiconductor Analysis (ASA) software.
引用
收藏
页码:4155 / 4162
页数:8
相关论文
共 34 条