Resource Allocation via Graph Neural Networks in Free Space Optical Fronthaul Networks

被引:14
作者
Gao, Zhan [1 ]
Eisen, Mark [2 ]
Ribeiro, Alejandro [1 ]
机构
[1] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[2] Intel Corp, Hillsboro, OR USA
来源
2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2020年
关键词
Free space optical networks; resource allocation; graph neural networks; primal-dual learning; SELECTION;
D O I
10.1109/GLOBECOM42002.2020.9322426
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks. The optimal allocation maximizes an average weighted sum-capacity subject to power limitation and data congestion constraints. Both adaptive power assignment and node selection are considered based on the instantaneous channel state information (CSI) of the links. By parameterizing the resource allocation policy, we formulate the problem as an unsupervised statistical learning problem. We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure with small-scale training parameters. The GNN is shown to retain the permutation equivariance that matches with the permutation equivariance of resource allocation policy in networks. The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of ,,tern models is not required. Numerical simulations present the strong performance of the GNN relative to a baseline policy with equal power assignment and random node selection.
引用
收藏
页数:6
相关论文
共 23 条
[1]  
Ahmed K., 2018, J OPT COMMUN NETW, V10, P103
[2]   FSO-Based Vertical Backhaul/Fronthaul Framework for 5G+Wireless Networks [J].
Alzenad, Mohamed ;
Shakir, Muhammad Z. ;
Yanikomeroglu, Halim ;
Alouini, Mohamed-Slim .
IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (01) :218-224
[3]  
Andrews L.C., 2005, LASER BEAM PROPAGATI, DOI DOI 10.1117/3.626196
[4]  
[Anonymous], 2017, 2017 IEEE International Conference on Communications ICC
[5]   Relay Selection Protocols for Relay-Assisted Free-Space Optical Systems [J].
Chatzidiamantis, Nestor D. ;
Michalopoulos, Diomidis S. ;
Kriezis, Emmanouil E. ;
Karagiannidis, George K. ;
Schober, Robert .
JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2013, 5 (01) :92-103
[6]  
Eisen M., 2019, ARXIV190901865
[7]   Learning Optimal Resource Allocations in Wireless Systems [J].
Eisen, Mark ;
Zhang, Clark ;
Chamon, Luiz F. O. ;
Lee, Daniel D. ;
Ribeiro, Alejandro .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (10) :2775-2790
[8]   Convolutional Neural Network Architectures for Signals Supported on Graphs [J].
Gama, Fernando ;
Marques, Antonio G. ;
Leus, Geert ;
Ribeiro, Alejandro .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (04) :1034-1049
[9]  
Gao Z., 2013, IEEE GLOB COMM C GLO
[10]  
Gao Z, 2020, INT CONF ACOUST SPEE, P9080, DOI [10.1109/icassp40776.2020.9054424, 10.1109/ICASSP40776.2020.9054424]