Targeted Deposition of Platinum onto Gold Nanorods by Plasmonic Hot Electrons

被引:57
作者
Forcherio, Gregory T. [1 ]
Baker, David R. [1 ]
Boltersdorf, Jonathan [1 ]
Leff, Asher C. [2 ]
McClure, Joshua P. [1 ]
Grew, Kyle N. [1 ]
Lundgren, Cynthia A. [1 ]
机构
[1] US Army, Res Lab, Sensors & Electron Devices Directorate, Adelphi, MD 20783 USA
[2] Gen Tech Serv, Adelphi, MD 20783 USA
关键词
DISCRETE-DIPOLE APPROXIMATION; CHEMICAL SOLUTION DEPOSITION; AU NANORODS; HYDROGEN-PRODUCTION; ANISOTROPIC GROWTH; OPTICAL-PROPERTIES; SINGLE-PARTICLE; SHAPE CONTROL; NANOPARTICLES; NANOPRISMS;
D O I
10.1021/acs.jpcc.8b07868
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic assembly of heterometallic nanoarchitectures via plasmonic hot electrons is demonstrated by liquid-phase, reductive photodeposition of platinum (Pt) onto gold nanorods (AuNR) under longitudinal surface plasmon (LSP) excitation. Nucleation of Pt from PtCl62- was initiated by plasmonic hot electrons at the Au surface. Sub-5 rim epitaxial overgrowth of Pt followed a core-shell morphology. Measured 6.5 longitudinal:transversal growth aspect ratio revealed longitudinal growth preferentiality that was consistent with the LSP dipole polarity. In situ spectroscopic monitoring of the photocatalytic growth process permitted real-time feedback into Au surface functionalization with PtCl62- according to 16 nm red-shift in its Cl-Pt ligand-to-metal charge-transfer (L pi MCT) band involving ligand pi orbitals. Subsequent Pt-0 growth kinetics were tracked using the L pi MCT band. Discrete dipole models elucidated evolving light-matter interactions of Pt-decorated AuNR that were consistent with experimental characterization. These studies provide a foundational mechanistic understanding toward guided assembly of heterometallic nanoarchitectures at ambient conditions via plasmonic hot electrons.
引用
收藏
页码:28901 / 28909
页数:9
相关论文
共 59 条
[1]   Role of counterion distribution on the structure of micelles in aqueous salt solutions: small-angle neutron scattering study [J].
Aswal, VK ;
Goyal, PS .
CHEMICAL PHYSICS LETTERS, 2002, 357 (5-6) :491-497
[2]   Nanoscale Control of Optical Heating in Complex Plasmonic Systems [J].
Baffou, Guillaume ;
Quidant, Romain ;
Javier Garcia de Abajo, F. .
ACS NANO, 2010, 4 (02) :709-716
[3]   Transverse oxidation of gold nanorods assisted by selective end capping of silver oxide [J].
Bao, Zhihong ;
Sun, Zhenhua ;
Xiao, Manda ;
Chen, Huanjun ;
Tian, Linwei ;
Wang, Jianfang .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (31) :11537-11543
[4]   Plasmon-assisted chemical vapor deposition [J].
Boyd, David A. ;
Greengard, Leslie ;
Brongersma, Mark ;
El-Naggar, Mohamed Y. ;
Goodwin, David G. .
NANO LETTERS, 2006, 6 (11) :2592-2597
[5]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/NNANO.2014.311, 10.1038/nnano.2014.311]
[6]   Understanding the Seed-Mediated Growth of Gold Nanorods through a Fractional Factorial Design of Experiments [J].
Burrows, Nathan D. ;
Harvey, Samantha ;
Idesis, Fred A. ;
Murphy, Catherine J. .
LANGMUIR, 2017, 33 (08) :1891-1907
[7]   Hot Charge Carrier Transmission from Plasmonic Nanostructures [J].
Christopher, Phillip ;
Moskovits, Martin .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 68, 2017, 68 :379-398
[8]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[9]   Plasmonic hot electron transport drives nano-localized chemistry [J].
Cortes, Emiliano ;
Xie, Wei ;
Cambiasso, Javier ;
Jermyn, Adam S. ;
Sundararaman, Ravishankar ;
Narang, Prineha ;
Schlueker, Sebastian ;
Maier, Stefan A. .
NATURE COMMUNICATIONS, 2017, 8
[10]   Laser-induced reduction and in-situ optical spectroscopy of individual plasmonic copper nanoparticles for catalytic reactions [J].
Di Martino, G. ;
Turek, V. A. ;
Braeuninger-Weimer, P. ;
Hofmann, S. ;
Baumberg, J. J. .
APPLIED PHYSICS LETTERS, 2017, 110 (07)