Studies on Preparation and Properties of LiFePO4 Cathode Material Modified by Polyacenic Semiconductor Materials for Lithium ion Batteries

被引:0
作者
Wang, Cunguo [1 ]
Ding, Zhaolong [2 ]
Lu, Naiqun [3 ]
机构
[1] Qingdao Univ Sci & Technol, Key Lab Rubber Plast, Minist Educ, Qingdao 266042, Peoples R China
[2] Qingdao Univ Sci & Technol, Sch Polymer Sci & Engn, Qingdao 266042, Peoples R China
[3] Qingdao Univ Sci & Technol, Fac Automat & Elect Engn, Qingdao 266042, Peoples R China
来源
MULTI-FUNCTIONAL MATERIALS AND STRUCTURES III, PTS 1 AND 2 | 2010年 / 123-125卷
关键词
Lithium iron phosphate; Polyacenic semiconductor materials; Suspension polymerization; Conducting polymers; Lithium ion batteries; POLYMER BATTERY;
D O I
10.4028/www.scientific.net/AMR.123-125.221
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The composite materials of LiFePO4 powder coated with polyacenic semiconductor materials (PAS) were successful prepared. Effects of the preparation conditions, such as precursor material, annealing temperature et al., on the structure and electrochemical properties of LiFePO4 were studied. SEM images and TG thermogravimetric analysis of the obtained carbon coating microspheres suggest that LiFePO4 powder was successfully encased within the carbon gel microspheres. The electrical conductivity of the composite materials could get to 10(-2) S.cm(-1). It was found that the composite LiFePO4 material exhibits excellent capability with initial discharge capacity more than 210 mAh.g(-1). The discharge capacity goes up to 340 mAh/g after ten times of cycle.
引用
收藏
页码:221 / +
页数:2
相关论文
共 12 条
[1]  
Amaucci G. G., 1996, J ELECROCHEM SOC, V143, P1114
[2]   Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Remskar, M ;
Hanzel, D ;
Pejovnik, S ;
Jamnik, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (03) :A607-A610
[3]   Oxidative electrolyte solvent degradation in lithium-ion batteries -: An in situ differential electrochemical mass spectrometry investigation [J].
Imhof, R ;
Novák, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (05) :1702-1706
[4]   Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J].
Padhi, AK ;
Nanjundaswamy, KS ;
Goodenough, JB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :1188-1194
[5]   Sonochemical synthesis of the high energy density cathode material VOPO4•2H2O [J].
Park, NG ;
Kim, KM ;
Chang, SH .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (10) :553-556
[6]   A LiTi2O4-LiFePO4 novel lithium-ion polymer battery [J].
Persi, L ;
Croce, F ;
Scrosati, B .
ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (01) :92-95
[7]  
Ravet N, 1999, EL SOC EL SOC JAP M
[8]   ELECTROCHEMICAL AND INSITU X-RAY-DIFFRACTION STUDIES OF LITHIUM INTERCALATION IN LIXCOO2 [J].
REIMERS, JN ;
DAHN, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (08) :2091-2097
[9]   Structural and electrochemical investigation of lithium insertion in the Li1-xMn2O4 spinel phase [J].
Saidi, MY ;
Barker, J ;
Koksbang, R .
ELECTROCHIMICA ACTA, 1996, 41 (02) :199-204
[10]   Electrochemical properties of carbon coated LiFePO4 cathode materials [J].
Wang, GX ;
Yang, L ;
Bewlay, SL ;
Chen, Y ;
Liu, HK ;
Ahn, JH .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :521-524