An explicit structure-preserving algorithm for the nonlinear fractional Hamiltonian wave equation

被引:14
作者
Fu, Yayun [1 ]
Cai, Wenjun [1 ]
Wang, Yushun [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear fractional wave equation; Hamiltonian system; Explicit energy-preserving scheme; Fourth-order difference formula; NUMERICAL-METHODS; 4TH-ORDER; SCHEME;
D O I
10.1016/j.aml.2019.106123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new approach to construct an explicit structure-preserving scheme for the nonlinear fractional wave equation. First, we reformulate the equation as a canonical Hamiltonian system. Then, we utilize the fourth-order fractional centered difference formula to discretize the equation in space direction, and obtain a conservative semi-discrete system. Subsequently, we develop an explicit fully-discrete energy-preserving scheme for the equation by using the proposed approach. Numerical examples are provided to confirm our theoretical analysis in long time computations at last. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 14 条
[1]  
Alfimov G., 2004, Fract. Differ. Appl, V4, P153
[2]  
[Anonymous], PREPRINT
[3]  
Caffarelli L., 2009, COMMUN PART DIFF EQ, V26, P159
[4]   Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions [J].
Cai, Wenjun ;
Jiang, Chaolong ;
Wang, Yushun ;
Song, Yongzhong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 395 :166-185
[5]   Partitioned averaged vector field methods [J].
Cai, Wenjun ;
Li, Haochen ;
Wang, Yushun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 370 :25-42
[6]  
Feng K, 2010, SYMPLECTIC GEOMETRIC ALGORITHMS FOR HAMILTONIAN SYSTEMS, P1, DOI 10.1007/978-3-642-01777-3
[7]   A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrodinger equations [J].
Li, Meng ;
Gu, Xian-Ming ;
Huang, Chengming ;
Fei, Mingfa ;
Zhang, Guoyu .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 358 :256-282
[8]   A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations [J].
Macias-Diaz, J. E. ;
Hendy, A. S. ;
De Staelen, R. H. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 325 :1-14
[9]   A Numerically Efficient Dissipation-Preserving Implicit Method for a Nonlinear Multidimensional Fractional Wave Equation [J].
Macias-Diaz, Jorge E. .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) :1-26
[10]   Structure-preserving numerical methods for the fractional Schrodinger equation [J].
Wang, Pengde ;
Huang, Chengming .
APPLIED NUMERICAL MATHEMATICS, 2018, 129 :137-158