HIGHER INTEGRABILITY FOR PARABOLIC SYSTEMS WITH NON-STANDARD GROWTH AND DEGENERATE DIFFUSIONS

被引:1
作者
Boegelein, Verena [1 ]
Duzaar, Frank [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, D-91054 Erlangen, Germany
关键词
Higher integrability; degenerate parabolic systems; non-standard growth condition; parabolic p-Laplacean; NONLINEAR ELLIPTIC SYSTEMS; P-LAPLACIAN TYPE; WEAK SOLUTIONS; REGULARITY; GRADIENT; EQUATIONS; BOUNDARY; EXPONENT; FLUIDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to establish a Meyer's type higher integrability result for weak solutions of possibly degenerate parabolic systems of the type partial derivative(t)u - div a(x, t, Du) = div(vertical bar F vertical bar F-p(x,F- t)-2). The vector-field a is assumed to fulfill a non-standard p(x, t)-growth condition. In particular it is shown that there exists epsilon > 0 depending only on the structural data such that there holds: vertical bar Du vertical bar(p(.)(1+epsilon)) is an element of L-loc(1), together with a local estimate for the p(.)(1+epsilon)-energy.
引用
收藏
页码:201 / 250
页数:50
相关论文
共 50 条
[41]   Lower semicontinuity and relaxation for free discontinuity functionals with non-standard growth [J].
Almi, Stefano ;
Reggiani, Dario ;
Solombrino, Francesco .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (01)
[42]   Regularity results for a new class of functionals with non-standard growth conditions [J].
Giannetti, Flavia ;
di Napoli, Antonia Passarelli .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (03) :1280-1305
[43]   Boundedness of solutions for an elliptic equation with non-standard growth [J].
Cianci, Paolo ;
Nicolosi, Francesco .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1825-1832
[44]   The strong minimum principle for quasisuperminimizers of non-standard growth [J].
Harjulehto, P. ;
Hasto, P. ;
Latvala, V. ;
Toivanen, O. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (05) :731-742
[45]   Harnack inequality for nonlocal problems with non-standard growth [J].
Chaker, Jamil ;
Kim, Minhyun ;
Weidner, Marvin .
MATHEMATISCHE ANNALEN, 2023, 386 (1-2) :533-550
[46]   On Minimizers for Functionals under the Non-standard Growth Conditions [J].
Ragusa, Maria Alessandra ;
Tachikawa, Atsushi .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
[47]   Nonlinear double porosity models with non-standard growth [J].
Choquet, Catherine ;
Pankratov, Leonid .
COMPTES RENDUS MECANIQUE, 2009, 337 (9-10) :659-666
[48]   INTERIOR REGULARITY TO THE STEADY INCOMPRESSIBLE SHEAR THINNING FLUIDS WITH NON-STANDARD GROWTH [J].
Bae, Hyeong-Ohk ;
So, Hyoungsuk ;
Youn, Yeonghun .
NETWORKS AND HETEROGENEOUS MEDIA, 2018, 13 (03) :479-491
[49]   Regularity for weak solutions to nondiagonal quasilinear degenerate parabolic systems with controllable growth conditions [J].
Dong, Yan ;
Li, Dongyan .
NEW YORK JOURNAL OF MATHEMATICS, 2018, 24 :53-81
[50]   Boundedness of solutions of the non-uniformly convex, non-standard growth Laplacian [J].
Harjulehto, P. ;
Hasto, P. ;
Latvala, V. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (7-9) :643-657