Convergence analysis of the extragradient method for equilibrium problems in Hadamard spaces

被引:7
作者
Iusem, Alfredo N. [1 ]
Mohebbi, Vahid [1 ]
机构
[1] Inst Matematica Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
Armijo-type search; Equilibrium problem; Extragradient method; Halpern regularization; Lipschitz continuous; Pseudo-monotone bifunction; GENERALIZED MONOTONE BIFUNCTIONS; VARIATIONAL INEQUALITY PROBLEMS; PROXIMAL POINT ALGORITHM; KORPELEVICHS METHOD; CURVATURE;
D O I
10.1007/s40314-020-1076-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an extragradient method for solving equilibrium problems of pseudo-monotone type in Hadamard spaces. We prove Delta-convergence of the generated sequence to a solution of the equilibrium problem, under standard assumptions on the bifunction. Then, we propose a regularization procedure which ensures strong convergence of the generated sequence to an equilibrium point of the problem.
引用
收藏
页数:21
相关论文
共 44 条
[2]  
Bacak Miroslav, 2014, Convex Analysis and Optimization in Hadamard Spaces
[3]  
Bao TQ, 2005, NONCONVEX OPTIM, V77, P113
[4]  
Batista EE, 2019, ESAIM CONTROL OPTIMI
[5]   Quasilinearization and curvature of Aleksandrov spaces [J].
Berg, I. D. ;
Nikolaev, I. G. .
GEOMETRIAE DEDICATA, 2008, 133 (01) :195-218
[6]  
Berg I. D., 1998, MICH MATH J, V45, P275
[7]   A GEOMETRIC STUDY OF WASSERSTEIN SPACES: HADAMARD SPACES [J].
Bertrand, Jerome ;
Kloeckner, Benoit .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2012, 4 (04) :515-542
[8]  
Bertsekas D. P., 1989, Parallel and Distributed Computation: Numer[1]ical Methods, V23
[9]   Generalized monotone bifunctions and equilibrium problems [J].
Bianchi, M ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (01) :31-43
[10]   Equilibrium Problems with Generalized Monotone Bifunctions and Applications to Variational Inequalities [J].
O. Chaldi ;
Z. Chbani ;
H. Riahi .
Journal of Optimization Theory and Applications, 2000, 105 (2) :299-323