Numerical methods for accurate description of ultrashort pulses in optical fibers

被引:8
作者
Amiranashvili, Shalva [1 ]
Radziunas, Mindaugas [1 ]
Bandelow, Uwe [1 ]
Ciegis, Raimondas [2 ]
机构
[1] Weierstrass Inst, Mohrenstr 39, D-10117 Berlin, Germany
[2] Vilnius Gediminas Tech Univ, Sauletekio Al 11, LT-10223 Vilnius, Lithuania
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2019年 / 67卷
关键词
Ultrashort optical pulses; Nonlinear fibers; Forward Maxwell equation; Generalized nonlinear Schrodinger equation; Splitting method; Spectral method; SPLITTING METHODS; PROPAGATION; SOLITONS; MODELS; FIELDS;
D O I
10.1016/j.cnsns.2018.07.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a one-dimensional first-order nonlinear wave equation, the so-called forward Maxwell equation (FME), which applies to a few-cycle optical pulse propagating along a preferred direction in a nonlinear medium, e.g., ultrashort pulses in nonlinear fibers. The model is a good approximation to the standard second-order wave equation under assumption of weak nonlinearity and spatial homogeneity in the propagation direction. We compare FME to the commonly accepted generalized nonlinear Schrodinger equation, which quantifies the envelope of a quickly oscillating wave field based on the slowly varying envelope approximation. In our numerical example, we demonstrate that FME, in contrast to the envelope model, reveals new spectral lines when applied to few-cycle pulses. We analyze and compare pseudo-spectral numerical schemes employing symmetric splitting for both models. Finally, we adopt these schemes to a parallel computation and discuss scalability of the parallelization. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:391 / 402
页数:12
相关论文
共 44 条
[1]  
Agrawal G., 2007, NONLINEAR FIBER OPTI, V4th
[2]   CHERENKOV RADIATION EMITTED BY SOLITONS IN OPTICAL FIBERS [J].
AKHMEDIEV, N ;
KARLSSON, M .
PHYSICAL REVIEW A, 1995, 51 (03) :2602-2607
[3]   A model equation for ultrashort optical pulses around the zero dispersion frequency [J].
Amiranashvili, S. ;
Vladimirov, A. G. ;
Bandelow, U. .
EUROPEAN PHYSICAL JOURNAL D, 2010, 58 (02) :219-226
[4]  
Amiranashvili S., 2011, Adv. Opt. Technol., V2011
[5]   Few-cycle optical solitary waves in nonlinear dispersive media [J].
Amiranashvili, Sh. ;
Bandelow, U. ;
Akhmediev, N. .
PHYSICAL REVIEW A, 2013, 87 (01)
[6]   Dispersion of nonlinear group velocity determines shortest envelope solitons [J].
Amiranashvili, Sh. ;
Bandelow, U. ;
Akhmediev, N. .
PHYSICAL REVIEW A, 2011, 84 (04)
[7]   NUMERICAL METHODS FOR A CLASS OF GENERALIZED NONLINEAR SCHRODINGER EQUATIONS [J].
Amiranashvili, Shalva ;
Ciegis, Raimondas ;
Radziunas, Mindaugas .
KINETIC AND RELATED MODELS, 2015, 8 (02) :215-234
[8]  
[Anonymous], 2003, SPRINGER SERIES COMP, DOI DOI 10.1007/978-3-662-09017-6
[9]  
[Anonymous], 1995, MPI FORUM MPI MESSAG
[10]  
[Anonymous], 1995, HDB OPTICS