High Thermal Gradient in Thermo-electrochemical Cells by Insertion of a Poly(Vinylidene Fluoride) Membrane

被引:48
作者
Hasan, Syed Waqar [1 ]
Said, Suhana Mohd [1 ]
Sabri, Mohd Faizul Mohd [2 ]
Abu Bakar, Ahmad Shuhaimi [3 ]
Hashim, Nur Awanis [4 ]
Hasnan, Megat Muhammad Ikhsan Megat [1 ]
Pringle, Jennifer M. [5 ]
MacFarlane, Douglas R. [6 ]
机构
[1] Univ Malaya, Fac Engn, Dept Elect Engn, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Fac Engn, Dept Mech Engn, Kuala Lumpur 50603, Malaysia
[3] Univ Malaya, Fac Sci, Dept Phys, Low Dimens Mat Res Ctr, Kuala Lumpur 50603, Malaysia
[4] Univ Malaya, Fac Engn, Dept Chem Engn, Kuala Lumpur 50603, Malaysia
[5] Deakin Univ, ARC Ctr Excellence Electromat Sci, Burwood, Vic 3800, Australia
[6] Monash Univ, Sch Chem, ARC Ctr Excellence Electromat Sci, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
DISTILLATION;
D O I
10.1038/srep29328
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermo-Electrochemical cells (Thermocells/TECs) transform thermal energy into electricity by means of electrochemical potential disequilibrium between electrodes induced by a temperature gradient (Delta T). Heat conduction across the terminals of the cell is one of the primary reasons for device inefficiency. Herein, we embed Poly(Vinylidene Fluoride) (PVDF) membrane in thermocells to mitigate the heat transfer effects - we refer to these membrane-thermocells as MTECs. At a Delta T of 12 K, an improvement in the open circuit voltage (V-oc) of the TEC from 1.3 mV to 2.8 mV is obtained by employment of the membrane. The PVDF membrane is employed at three different locations between the electrodes i.e. x = 2 mm, 5 mm, and 8 mm where 'x' defines the distance between the cathode and PVDF membrane. We found that the membrane position at x = 5 mm achieves the closest internal Delta T (i.e. 8.8 K) to the externally applied Delta T of 10 K and corresponding power density is 254 nWcm(-2); 78% higher than the conventional TEC. Finally, a thermal resistivity model based on infrared thermography explains mass and heat transfer within the thermocells.
引用
收藏
页数:11
相关论文
共 28 条
[1]   Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energy [J].
Abraham, Theodore J. ;
MacFarlane, Douglas R. ;
Baughman, Ray H. ;
Jin, Liyu ;
Li, Na ;
Pringle, Jennifer M. .
ELECTROCHIMICA ACTA, 2013, 113 :87-93
[2]   High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting [J].
Abraham, Theodore J. ;
MacFarlane, Douglas R. ;
Pringle, Jennifer M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (09) :2639-2645
[3]   Seebeck coefficients in ionic liquids -prospects for thermo-electrochemical cells [J].
Abraham, Theodore J. ;
MacFarlane, Douglas R. ;
Pringle, Jennifer M. .
CHEMICAL COMMUNICATIONS, 2011, 47 (22) :6260-6262
[4]   Combining thermogalvanic corrosion and thermogalvanic redox couples for improved electrochemical waste heat harvesting [J].
Alzahrani, Hassan A. H. ;
Black, Jeffrey J. ;
Goonetilleke, Damian ;
Panchompoo, Janjira ;
Aldous, Leigh .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 58 :76-79
[5]   Advances in Membrane Distillation for Water Desalination and Purification Applications [J].
Camacho, Lucy Mar ;
Dumee, Ludovic ;
Zhang, Jianhua ;
Li, Jun-de ;
Duke, Mikel ;
Gomez, Juan ;
Gray, Stephen .
WATER, 2013, 5 (01) :94-196
[6]  
Chasmar R. P., 1959, Journal of Electronics and Control, V7, P52, DOI [DOI 10.1080/00207215908937186, 10.1080/00207215908937186]
[7]  
Chum H. L., 1981, TECHNICAL REPORT
[8]   Membrane distillation and related operations - A review [J].
Curcio, E ;
Drioli, E .
SEPARATION AND PURIFICATION REVIEWS, 2005, 34 (01) :35-86
[9]  
Gunawan A., 2014, NANOSC MICROSC THERM, V17, P304
[10]   THERMOELECTRIC FIGURE OF MERIT OF A ONE-DIMENSIONAL CONDUCTOR [J].
HICKS, LD ;
DRESSELHAUS, MS .
PHYSICAL REVIEW B, 1993, 47 (24) :16631-16634