Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage

被引:90
作者
Kurnia, Jundika C. [1 ]
Sasmito, Agus P. [2 ]
机构
[1] Univ Teknol PETRONAS, Dept Mech Engn, Bandar Seri Iskandar 32610, Perak Darul Rid, Malaysia
[2] McGill Univ, Dept Min & Mat Engn, 3450 Univ,Frank Dawson Adams Bldg, Montreal, PQ H3A 2A7, Canada
关键词
Computational modeling; Enhancing heat transfer performance; Rotating latent heat thermal energy storage; PHASE-CHANGE MATERIALS; ENHANCEMENT; PARAFFIN; DESIGN; UNIT;
D O I
10.1016/j.apenergy.2017.08.087
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
During charging and discharging process, due to natural convection, latent heat thermal energy storage (LHTES) experiences a non uniform heat transfer process in which higher heat transfer generally occurs at the upper area of LHTES. To overcome this issue, a rotating LHTES is proposed and is expected to have higher and more uniform heat transfer. Hence, this study is conducted to evaluate the potential of heat transfer enhancement of latent heat thermal energy storage by rotation. A computational fluid dynamics (CFD) model for conjugate heat transfer between heat transfer fluid (HTF) and phase change material (PCM) in the latent heat thermal energy storage which experiences charging-discharging process is developed and validated against the experimental measured data. An enthalpy-porosity formulation is adopted to take into account the melting and solidification process of the PCM. For performance evaluation, thermal enhancement ratio (TER) is introduced and defined as the ratio of heat transfer rate enhancement due to rotation to the heat transfer rate of the base case (stationary). This ratio takes into account the parasitic energy needed for rotation. The results reveal that rotation does increase the heat transfer performance of LHTES with up to 25% and 41% enhancement can be achieved during charging and discharging, respectively. In addition, it was found that rotational speed posses significant influence on the performance of rotating LHTES where, for the studied cases, higher rotation speed results in higher heat transfer rate. This study serves as a guideline in designing innovative high performance rotating LHTES.
引用
收藏
页码:542 / 554
页数:13
相关论文
共 28 条
[1]   LOW-TEMPERATURE LATENT-HEAT THERMAL-ENERGY STORAGE - HEAT-STORAGE MATERIALS [J].
ABHAT, A .
SOLAR ENERGY, 1983, 30 (04) :313-332
[2]   A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) [J].
Agyenim, Francis ;
Hewitt, Neil ;
Eames, Philip ;
Smyth, Mervyn .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :615-628
[3]   A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins [J].
Agyenim, Francis ;
Eames, Philip ;
Smyth, Mervyn .
SOLAR ENERGY, 2009, 83 (09) :1509-1520
[4]   Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers [J].
Al-Abidi, Abduljalil A. ;
Mat, Sohif ;
Sopian, K. ;
Sulaiman, M. Y. ;
Mohammad, Abdulrahman Th. .
APPLIED THERMAL ENGINEERING, 2013, 53 (01) :147-156
[5]  
[Anonymous], 2013, ANSYS FLUENT THEOR G
[6]  
[Anonymous], RENEW ENERGY
[7]   Research progress of phase change materials (PCMs) embedded with metal foam (a review) [J].
Chen, Jianqing ;
Yang, Donghui ;
Jiang, Jinghua ;
Ma, Aibin ;
Song, Dan .
8TH INTERNATIONAL CONFERENCE ON POROUS METALS AND METALLIC FOAMS, 2014, 4 :389-394
[8]   Multistage latent heat cold thermal energy storage design analysis [J].
Chiu, Justin N. W. ;
Martin, Viktoria .
APPLIED ENERGY, 2013, 112 :1438-1445
[9]   Thermal performance analysis for a heat receiver using multiple phase change materials [J].
Cui, HT ;
Yuan, XG ;
Hou, XB .
APPLIED THERMAL ENGINEERING, 2003, 23 (18) :2353-2361
[10]  
Hibbeler R.C., 2010, Engineering Mechanics: Statics, V12th