Finite Speed of Quantum Scrambling with Long Range Interactions

被引:82
作者
Chen, Chi-Fang [1 ,2 ]
Lucas, Andrew [1 ,3 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
关键词
Dipolar interaction - Experimental system - Long range interactions - Long-range Coulomb interaction - Of quantum-information - Power law interactions - Quantum Information - Quantum-information processing;
D O I
10.1103/PhysRevLett.123.250605
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a locally interacting many-body system, two isolated qubits, separated by a large distance r, become correlated and entangled with each other at a time t >= r/v. This finite speed v of quantum information scrambling limits quantum information processing, thermalization, and even equilibrium correlations. Yet most experimental systems contain long range power-law interactions-qubits separated by r have potential energy V(r) proportional to r(-alpha). Examples include the long range Coulomb interactions in plasma (alpha = 1) and dipolar interactions between spins (alpha = 3). In one spatial dimension, we prove that the speed of quantum scrambling remains finite for sufficiently large alpha. This result parametrically improves previous bounds, compares favorably with recent numerical simulations, and can be realized in quantum simulators with dipolar interactions. Our new mathematical methods lead to improved algorithms for classically simulating quantum systems, and improve bounds on environmental decoherence in experimental quantum information processors.
引用
收藏
页数:5
相关论文
共 22 条
[1]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[2]  
Chen C.-F., ARXIV190503682
[3]   Quantum chaos dynamics in long-range power law interaction systems [J].
Chen, Xiao ;
Zhou, Tianci .
PHYSICAL REVIEW B, 2019, 100 (06)
[4]   Perfect state transfer in quantum spin networks [J].
Christandl, M ;
Datta, N ;
Ekert, A ;
Landahl, AJ .
PHYSICAL REVIEW LETTERS, 2004, 92 (18) :187902-1
[5]   General entanglement scaling laws from time evolution [J].
Eisert, Jens ;
Osborne, Tobias J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (15)
[6]  
Else D. V., ARXIV180906369
[7]   Nearly Linear Light Cones in Long-Range Interacting Quantum Systems [J].
Foss-Feig, Michael ;
Gong, Zhe-Xuan ;
Clark, Charles W. ;
Gorshkov, Alexey V. .
PHYSICAL REVIEW LETTERS, 2015, 114 (15)
[8]  
Gärttner M, 2017, NAT PHYS, V13, P781, DOI [10.1038/nphys4119, 10.1038/NPHYS4119]
[9]  
Guo A. Y., ARXIV190602662
[10]  
Haah J., ARXIV180103922