The Fokker-Planck equation with subcritical confinement force

被引:10
作者
Kavian, Otared [1 ,2 ]
Mischler, Stephane [3 ]
Ndao, Mamadou [1 ,2 ]
机构
[1] Univ Paris Saclay, UVSQ, 45 Ave Etats Unis, F-78035 Versailles, France
[2] Univ Paris Saclay, CNRS, UMR 8100, Lab Math Versailles, 45 Ave Etats Unis, F-78035 Versailles, France
[3] Univ Paris 09, PSL Res Univ, CNRS, UMR 7534,CEREMADE, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2021年 / 151卷
关键词
Fokker-Planck equation; Semigroup; Weak Poincare inequality; Weak dissipativity; Krein-Rutman theorem; Spectral gap; BOLTZMANN-EQUATION; CONVERGENCE; EQUILIBRIUM; STABILITY; RATES; FRAGMENTATION; INEQUALITIES; SYSTEMS;
D O I
10.1016/j.matpur.2021.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Fokker-Planck equation with subcritical confinement force field which may not derive from a potential function. We prove the existence of a unique positive equilibrium of mass one and we establish some subgeometric, or geometric, rate of convergence to a multiple of this equilibrium (depending on the space to which belongs the initial datum) in many spaces. Our results generalize similar results introduced by Toscani, Villani [33] and Riickner, Wang [31] for some forces associated to a potential and extended by Douc, Fort, Guillin [12] and Bakry, Cattiaux, Guillin [4] for some general forces: however in our approach the spaces are more general, and the rates of convergence to equilibrium are sharper. (C) 2021 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:171 / 211
页数:41
相关论文
共 34 条
[1]  
[Anonymous], 1986, LECT NOTES MATH
[2]   ON THE SPEED OF APPROACH TO EQUILIBRIUM FOR A COLLISIONLESS GAS [J].
Aoki, Kazuo ;
Golse, Francois .
KINETIC AND RELATED MODELS, 2011, 4 (01) :87-107
[3]   A simple proof of the Poincare inequality for a large class of probability measures including the log-concave case [J].
Bakry, Dominique ;
Barthe, Franck ;
Cattiaux, Patrick ;
Guillin, Arnaud .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 :60-66
[4]   Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincare [J].
Bakry, Dorninique ;
Cattiaux, Patrick ;
Guillin, Arnaud .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (03) :727-759
[5]   Polynomial stability of operator semigroups [J].
Batkai, Andras ;
Engel, Klaus-Jochen ;
Pruess, Jan ;
Schnaubelt, Roland .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (13-14) :1425-1440
[6]   Non-uniform stability for bounded semi-groups on Banach spaces [J].
Batty, Charles J. K. ;
Duyckaerts, Thomas .
JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (04) :765-780
[9]  
Canizo J.A., SEMIGROUP PROO UNPUB
[10]  
Carrapatoso K, 2017, ANN PDE, V3