On the convergence to equilibrium of Brownian motion on compact simple Lie groups

被引:6
作者
Saloff-Coste, L [1 ]
机构
[1] Cornell Univ, Dept Math, Cornell, NY USA
基金
美国国家科学基金会;
关键词
Brownian motion; heat diffusion; spectral gap; compact simple Lie groups; compact irreducible symmetric spaces;
D O I
10.1007/BF02922178
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M = G/H bean irreducible homogeneous compact manifold of dimension n equipped with its canonical Riemannian metric. Let lambda be the lowest nonzero eigenvalue of the Laplace operator Let A be the normalized Haar measure and mu(t) be the heat diffusion measure, i.e., the law of Brownian motion started at a fixed origin in M. We show that the total variation distance between At and A is not small for t << lambda(-1) log n. This is sharp, up to a factor of two, in the case of compact irreducible simply connected symmetric spaces.
引用
收藏
页码:715 / 733
页数:19
相关论文
共 23 条
  • [1] [Anonymous], GROUPES ALGEBRES LIE
  • [2] [Anonymous], 1989, CAMBRIDGE TRACTS MAT
  • [3] Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
  • [4] Potential theory on infinite products and locally compact groups
    Bendikov, A
    Saloff-Coste, L
    [J]. POTENTIAL ANALYSIS, 1999, 11 (04) : 325 - 358
  • [5] Bendikov A, 1997, J REINE ANGEW MATH, V493, P171
  • [6] Some dichotomy results for central Gaussian convolution semigroups on compact groups
    Bendikov, A
    Saloff-Coste, L
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (04) : 561 - 573
  • [7] BOURBAKI N, 1968, GROUPES ALGEBRES LIE, pCH4
  • [8] Diaconis P., 1988, GROUP REPRESENTATION
  • [9] Fukushima M., 2011, De Gruyter Stud. Math., V19
  • [10] Goodman R., 1998, Representations and Invariants of the Classical Groups