Index of Refraction change in common chalcogenide glasses due to precision glass molding

被引:0
作者
Lindberg, G. P. [1 ]
Deegan, J. P. [1 ]
Wachtel, P. F. [1 ]
Musgraves, J. D. [1 ]
Ramsey, J. L. [1 ]
机构
[1] Rochester Precis Opt, W Henrietta, NY 14586 USA
来源
ADVANCED OPTICS FOR IMAGING APPLICATIONS: UV THROUGH LWIR IV | 2019年 / 10998卷
关键词
Chalcogenide; Glass; Refractometry; Index of Refraction; Precision Glass Molding; Molding;
D O I
10.1117/12.2518932
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Due to changes in the fictive temperature as a result of the precision glass molding process there is an induced change in the index of refraction. This can be on the order of 0.001 in oxide glasses and as high as 0.02 in the chalcogenide glasses. It is important to accurately define the expected index of refraction and the tolerance of it after molding as there may be an impact on the optical design tolerances and system performance. We report on the measured change in index of refraction in common chalcogenide glasses due to the Rochester Precision Optics (RPO) precision glass molding process. We will compare the change in index of refraction between as advertised, as measured, as molded, and we will look at post mold annealing recovery. Utilizing an upgraded M3 refractometer we will be able to measure the index from the visible to the LWIR.
引用
收藏
页数:4
相关论文
共 10 条
[1]   REFRACTIVE-INDEX OF CHALCOGENIDE GLASSES OVER A WIDE-RANGE OF COMPOSITIONS [J].
AIO, LG ;
EFIMOV, AM ;
KOKORINA, VF .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1978, 27 (03) :299-307
[2]  
Bayya S.S., 2018, SPIE OPTICAL ENG APP, V10743
[3]   Index change of chalcogenide materials from precision glass molding processes [J].
Deegan, J. ;
Walsh, K. ;
Lindberg, G. ;
Benson, R. ;
Gibson, D. ;
Bayya, S. ;
Sanghera, J. ;
Stover, E. .
INFRARED TECHNOLOGY AND APPLICATIONS XLI, 2015, 9451
[4]  
Deegan J., 2007, PRECISION GLASS MOLD
[5]   Refractive index drop observed after precision molding of optical elements:: A quantitative understanding based on the Tool-Narayanaswamy-Moynihan model [J].
Fotheringham, Ulrich ;
Baltes, Andrea ;
Fischer, Peter ;
Hoehn, Petra ;
Jedamzik, Ralf ;
Schenk, Christian ;
Stolz, Claudia ;
Westenberger, Gerhard .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (03) :780-783
[6]   Raman and CT scan mapping of chalcogenide glass diffusion generated gradient index profiles [J].
Lindberg, G. P. ;
Cruz, J. ;
Unger, B. ;
Deegan, J. ;
Benson, R. ;
Gibson, D. ;
Bayya, S. ;
Sanghera, J. ;
Nguyen, V ;
Kotov, M. .
ADVANCED OPTICS FOR DEFENSE APPLICATIONS: UV THROUGH LWIR III, 2018, 10627
[7]   Investigation of index of refraction changes in chalcogenide glasses during molding processes [J].
Novak, Jacklyn ;
Pini, Ray ;
Moreshead, William V. ;
Stover, Erik ;
Symmons, Alan .
ELECTRO-OPTICAL AND INFRARED SYSTEMS: TECHNOLOGY AND APPLICATIONS X, 2013, 8896
[8]   Design Study of a MWIR/LWIR Multiple FOV Lens [J].
Ramsey, J. L. ;
Unger, B. L. ;
Lindberg, G. P. .
ADVANCED OPTICS FOR DEFENSE APPLICATIONS: UV THROUGH LWIR III, 2018, 10627
[9]   Experimental Verification of the Minimum Number of Diffractive Zones for Effective Chromatic Correction in the LWIR [J].
Ramsey, J. L. ;
Walsh, K. F. ;
Smith, M. ;
Deegan, J. .
ADVANCED OPTICS FOR DEFENSE APPLICATIONS: UV THROUGH LWIR, 2016, 9822
[10]  
ZELAZNY AL, 2015, SPIE DEFENSE SECURIT, V9451