Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators

被引:126
作者
Kim, Sangsik [1 ,2 ,3 ,6 ]
Han, Kyunghun [1 ,2 ]
Wang, Cong [1 ]
Jaramillo-Villegas, Jose A. [1 ,3 ,4 ]
Xue, Xiaoxiao [1 ,7 ]
Bao, Chengying [1 ]
Xuan, Yi [1 ,2 ]
Leaird, Daniel E. [1 ]
Weiner, Andrew M. [1 ,2 ,3 ]
Qi, Minghao [1 ,2 ,3 ,5 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[3] Purdue Univ, Purdue Quantum Ctr, W Lafayette, IN 47907 USA
[4] Univ Tecnol Pereira, Fac Ingn, RIS 660003, Pereira, Colombia
[5] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[6] Texas Tech Univ, Dept Elect & Comp Engn, Lubbock, TX 79409 USA
[7] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
美国国家科学基金会;
关键词
ORDER MODE SUPPRESSION; MONOLITHIC MICRORESONATOR; SOLITON REGIME; NORMAL GVD; CHIP;
D O I
10.1038/s41467-017-00491-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Kerr nonlinearity-based frequency combs and solitons have been generated from on-chip microresonators. The initiation of the combs requires global or local anomalous dispersion which leads to many limitations, such as material choice, film thickness, and spectral ranges where combs can be generated, as well as fabrication challenges. Using a concentric racetrack-shaped resonator, we show that such constraints can be lifted and resonator dispersion can be engineered to be anomalous over moderately broad bandwidth. We demonstrate anomalous dispersion in a 300 nm thick silicon nitride film, suitable for semiconductor manufacturing but previously thought to result in waveguides with high normal dispersion. Together with a mode-selective, tapered coupling scheme, we generate coherent mode-locked frequency combs. Our method can realize anomalous dispersion for resonators at almost any wavelength and simultaneously achieve material and process compatibility with semiconductor manufacturing.
引用
收藏
页数:8
相关论文
共 45 条
  • [1] Photonic chip-based optical frequency comb using soliton Cherenkov radiation
    Brasch, V.
    Geiselmann, M.
    Herr, T.
    Lihachev, G.
    Pfeiffer, M. H. P.
    Gorodetsky, M. L.
    Kippenberg, T. J.
    [J]. SCIENCE, 2016, 351 (6271) : 357 - 360
  • [2] Optical frequency comb generation from a monolithic microresonator
    Del'Haye, P.
    Schliesser, A.
    Arcizet, O.
    Wilken, T.
    Holzwarth, R.
    Kippenberg, T. J.
    [J]. NATURE, 2007, 450 (7173) : 1214 - 1217
  • [3] Octave Spanning Tunable Frequency Comb from a Microresonator
    Del'Haye, P.
    Herr, T.
    Gavartin, E.
    Gorodetsky, M. L.
    Holzwarth, R.
    Kippenberg, T. J.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (06)
  • [4] Del'Haye P, 2016, NAT PHOTONICS, V10, P516, DOI [10.1038/nphoton.2016.105, 10.1038/NPHOTON.2016.105]
  • [5] Phase steps and resonator detuning measurements in microresonator frequency combs
    Del'Haye, Pascal
    Coillet, Aurelien
    Loh, William
    Beha, Katja
    Papp, Scott B.
    Diddams, Scott A.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [6] Spectral line-by-line pulse shaping of on-chip microresonator frequency combs
    Ferdous, Fahmida
    Miao, Houxun
    Leaird, Daniel E.
    Srinivasan, Kartik
    Wang, Jian
    Chen, Lei
    Varghese, Leo Tom
    Weiner, Andrew M.
    [J]. NATURE PHOTONICS, 2011, 5 (12) : 770 - 776
  • [7] Guo H, 2017, NAT PHYS, V13, P94, DOI [10.1038/nphys3893, 10.1038/NPHYS3893]
  • [8] Bichromatically pumped microresonator frequency combs
    Hansson, T.
    Wabnitz, S.
    [J]. PHYSICAL REVIEW A, 2014, 90 (01):
  • [9] Dynamics of the modulational instability in microresonator frequency combs
    Hansson, T.
    Modotto, D.
    Wabnitz, S.
    [J]. PHYSICAL REVIEW A, 2013, 88 (02):
  • [10] Herr T, 2014, NAT PHOTONICS, V8, P145, DOI [10.1038/nphoton.2013.343, 10.1038/NPHOTON.2013.343]