Filtered back-projection reconstruction for attenuation proton CT along most likely paths

被引:14
作者
Quinones, C. T. [1 ]
Letang, J. M. [1 ]
Rit, S. [1 ]
机构
[1] Univ Lyon 1, Ctr Leon Berard, CREATIS, CNRS,UMR5220,Inserm,U1206,INSA Lyon, F-69622 Villeurbanne, France
关键词
proton computed tomography; proton CT; filtered back-projection; most likely path; inelastic cross-section; attenuation; MULTIPLE COULOMB SCATTERING; COMPUTED-TOMOGRAPHY; STOPPING-POWER; MONTE-CARLO; RANGE UNCERTAINTIES; SPATIAL-RESOLUTION; CONCEPTUAL DESIGN; RADIOGRAPHY; THERAPY; RADIOTHERAPY;
D O I
10.1088/0031-9155/61/9/3258
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This work investigates the attenuation of a proton beam to reconstruct the map of the linear attenuation coefficient of a material which is mainly caused by the inelastic interactions of protons with matter. Attenuation proton computed tomography (pCT) suffers from a poor spatial resolution due to multiple Coulomb scattering (MCS) of protons in matter, similarly to the conventional energy-loss pCT. We therefore adapted a recent filtered back-projection algorithm along the most likely path (MLP) of protons for energy-loss pCT (Rit et al 2013) to attenuation pCT assuming a pCT scanner that can track the position and the direction of protons before and after the scanned object. Monte Carlo simulations of pCT acquisitions of density and spatial resolution phantoms were performed to characterize the new algorithm using Geant4 (via Gate). Attenuation pCT assumes an energy-independent inelastic cross-section, and the impact of the energy dependence of the inelastic crosssection below 100 MeV showed a capping artifact when the residual energy was below 100 MeV behind the object. The statistical limitation has been determined analytically and it was found that the noise in attenuation pCT images is 411 times and 278 times higher than the noise in energy-loss pCT images for the same imaging dose at 200 MeV and 300 MeV, respectively. Comparison of the spatial resolution of attenuation pCT images with a conventional straight-line path binning showed that incorporating the MLP estimates during reconstruction improves the spatial resolution of attenuation pCT. Moreover, regardless of the significant noise in attenuation pCT images, the spatial resolution of attenuation pCT was better than that of conventional energy-loss pCT in some studied situations thanks to the interplay of MCS and attenuation known as the West-Sherwood effect.
引用
收藏
页码:3258 / 3278
页数:21
相关论文
共 47 条
  • [1] GEANT4-a simulation toolkit
    Agostinelli, S
    Allison, J
    Amako, K
    Apostolakis, J
    Araujo, H
    Arce, P
    Asai, M
    Axen, D
    Banerjee, S
    Barrand, G
    Behner, F
    Bellagamba, L
    Boudreau, J
    Broglia, L
    Brunengo, A
    Burkhardt, H
    Chauvie, S
    Chuma, J
    Chytracek, R
    Cooperman, G
    Cosmo, G
    Degtyarenko, P
    Dell'Acqua, A
    Depaola, G
    Dietrich, D
    Enami, R
    Feliciello, A
    Ferguson, C
    Fesefeldt, H
    Folger, G
    Foppiano, F
    Forti, A
    Garelli, S
    Giani, S
    Giannitrapani, R
    Gibin, D
    Cadenas, JJG
    González, I
    Abril, GG
    Greeniaus, G
    Greiner, W
    Grichine, V
    Grossheim, A
    Guatelli, S
    Gumplinger, P
    Hamatsu, R
    Hashimoto, K
    Hasui, H
    Heikkinen, A
    Howard, A
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) : 250 - 303
  • [2] CONCEPTUAL DESIGN OF PROTON COMPUTED-TOMOGRAPHY WITH MAGNETIC SPECTROMETER
    AKISADA, M
    OHASHI, J
    KONDO, K
    KURIHARA, D
    MIYASHITA, S
    TACHIKAWA, A
    TAKADA, Y
    TAKIKAWA, K
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1983, 22 (04): : 752 - 758
  • [3] Construction, test and operation of a proton range radiography system
    Amaldi, U.
    Bianchi, A.
    Chang, Y-H.
    Go, A.
    Hajdas, W.
    Malakhov, N.
    Samarati, J.
    Sauli, F.
    Watts, D.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 629 (01) : 337 - 344
  • [4] Monte Carlo comparison of x-ray and proton CT for range calculations of proton therapy beams
    Arbor, N.
    Dauvergne, D.
    Dedes, G.
    Letang, J. M.
    Parodi, K.
    Quinones, C. T.
    Testa, E.
    Rit, S.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (19) : 7585 - 7599
  • [5] Bethe H, 1932, Z PHYS, V76, P293, DOI 10.1007/BF01342532
  • [6] Proton computed tomography from multiple physics processes
    Bopp, C.
    Colin, J.
    Cussol, D.
    Finck, Ch
    Labalme, M.
    Rousseau, M.
    Brasse, D.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (20) : 7261 - 7276
  • [7] FAST MULTIWIRE PROPORTIONAL CHAMBER DATA ENCODING SYSTEM FOR PROTON TOMOGRAPHY
    BROWN, D
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1979, 26 (04) : 4606 - 4613
  • [8] The influence of CT image noise on proton range calculation in radiotherapy planning
    Chvetsov, Alexei V.
    Paige, Sandra L.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (06) : N141 - N149
  • [10] QUANTITATIVE PROTON TOMOGRAPHY - PRELIMINARY EXPERIMENTS
    CORMACK, AM
    KOEHLER, AM
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 1976, 21 (04) : 560 - 569